AWD Associates, Inc. Hi-Performance Drill Reconditioning Specialists

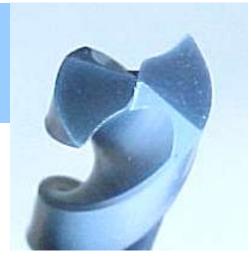
Reconditioning Facts and Benefits

It is our goal to provide measurable cost improvements in manufacturing processes through:

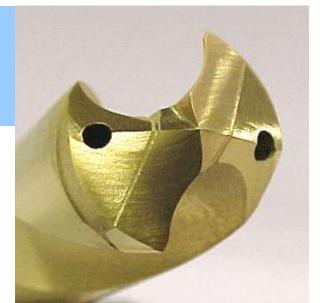
- Proprietary drill point geometry & treatments
- Revolutionary "microstructure enhancementTM process"

Tooling problems

- Primary factors for tool life limitations
 - Heat
 - Wear
 - Vibration

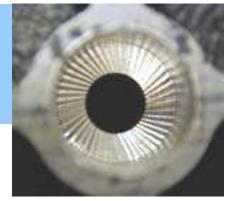

Defeating Heat

- Coatings
 - TIALN (heat & wear)
 - Hardlube (hss tools, dry machining)
 - TICN (abrasive, sticky, heat & pressure)
 - Custom coating blends (for multiple benefits)
 - Regrinds without coating
 - Lose 25% to 50% of life potential
- Tool material
 - Carbide
- Coolant
 - Thru the tool



Defeating Wear

- Coatings
 - TIN (general purpose)
 - TIALN (heat & wear)
 - ALTIN (interrupted cuts)


- Coating blends (maximize specific applications)
 - Copper, fiberglass, polycarbonates, circuit boards
- Tool materials
 - High Speed Steel tools (limited life and output)
 - Carbide (optimum life and wear)
- Drill edge prep (cutting tip)
 - Could lose 30% 50% potential life
 - Poor edge causes tool chipping

AWD

Defeating vibration

• Equipment

Tool chatter in the hole High frequency vibration

- Modern machines, holding devices
- Proper alignments, bearings
- Horsepower
- Tool material
 - All are susceptible to vibration
- Drill edge prep
 - Inconsistency introduces vibration

Wondering hole Low frequency vibration

AWD

Carbide or HSS ?

Factors for choosing HSS.

- Lower initial purchase cost
 Production economics unimportant
- Machinery Limitations
 - Vibration, flex, horsepower
- Deep, small diameter drilling
 Vibration, flex

AWD

Carbide or HSS ?

Factors for choosing Carbide. **Increased performance** 10 to 1 life over HSS **Reduced cycle time Modern Equipment Higher horsepower available Improve process performance (speeds & feeds)** Stronger, more rigid drill Better position and size control Lower overall production costs AW

Carbide or HSS ?

• Push carbide to break up chips

AWD

Product evolution

- Demands over last 10 years
 - Closer tolerances
 - Increase horsepower & speed requirements
 - Application specific materials
 - Higher output demands
- Smaller margins & budgets

AWD

Drill technology

- Same basic design as 50 years ago
- Evolutions
 - Point geometry
 - Drill materials
 - Coatings
 - Coolant holes more prevalent

AWD

Tool Grinders

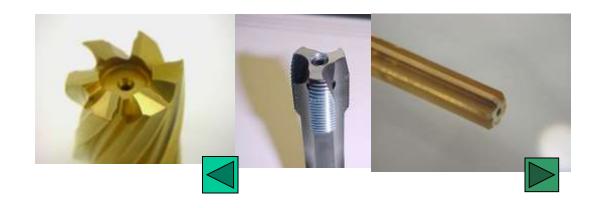
- Designed to manufacture cutting tools
 - Resharpenings used to help justify purchase
 - Economics don't fit
 - Operator burden rate
 - Cost of programming, multiple wheels
 - Edge prep completed by hand
- Hi-Performance Twist drills
 - Resharpening more complex than new tool

AWD

AWD drill processing & treatments

- Proprietary drill point geometry (new or used)
 - Increase tool life and machine performance
 - Dramatic cycle time reductions
 - Increased quality
 - Reduced chipping and fractures (less down time)
- High performance coatings
 - Matched to your application
 - Application specific coating blends
- Microstructure EnhancementTM
 - Proprietary process improves the structure of the tool
 - Dramatic improvements in tool material strength
 - Substantially decreases harmonics of vibration

AWD


Other tooling

- Apply high performance coatings
- Microstructure EnhancementTM

Results show dramatic improvements in overall life, performance and economics for a wide variety of tools.

Endmills, Taps, Reamers, Punches, Boring Bars, Gear Cutters, etc.

AW

Some stats to consider

- Cutting tool industry in the U.S.
 Fiscal 2004, \$1.697 billion purchased US
 Globally 68% to 72% of all metal removal is drilling
 - \$1,188 billion for drills (70%)
 - \$509 million for everything else
 - Endmills, inserts, reamers, taps, gear cutters, etc.
 - Average \$100/drill
 - 8.5 million drills per month
 - 102 million drills per year

Sources: Cutting tool digest Manufacturing Engineering

Statistics on drilling

- Less than 50% of drills are used twice
 - \$594 million thrown away
 - Average resharpen-recoat is \$25
 - Average resharpen-recoat is 5 times/drill
 - Resharpen only 50% of new life
 - Resharpen-recoat 70% of new life
 - AWD has consistently provided 100% or more of new drill performance

Sources: Kennametal Sumitomo

Cost/yield example

- New ¹/₂" drill gets 1000 parts (\$100)
- No regrinds cost per hole \$.10
- Typical regrind process
 - Lifetime yields
 - 4500 total parts
 - Regrind/coat 5 times (\$25 each = \$125 total)
 - 70% utilization on regrinds
 - 3500 parts on 5 regrinds
 - Tooling cost is \$225
 - Tooling cost per part is \$.05

AWD

Improved life example

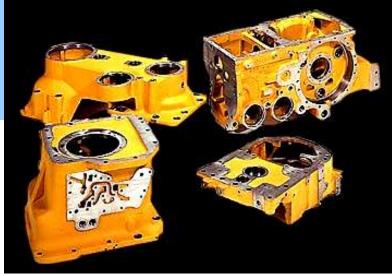
- Buy the same $\frac{1}{2}$ " drill (\$100)
- AWD 100% performance (1000) (regrind)
- Lifetime yields
 - 11000 total holes from 1 drill
 - Recondition/recoat 10 times or more (\$25 ea.)
 - That's 1000 holes for \$100, next 1000 holes @ \$25 per
 1000
- Total drill cost is \$350
- Drill cost per hole is \$.032
- Net: almost 21/2 times the holes @ 36% less cost per hole
- Cycle time and capacity improvements = bonus \$

AWD

Economies of scale

- Cost of tooling on 250,000 parts
 - \$.05 per part = \$12,500
 - \$.032 per part = \$ 8,000
- Cost of tooling on 2,000,000 parts
 - \$.05 per part = \$100,000
 - \$.032 per part = \$64,000

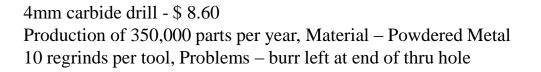
AWD



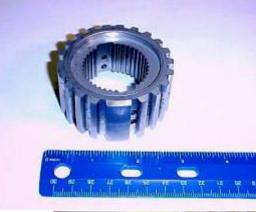
Customer example

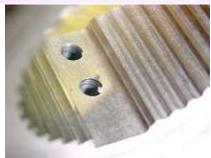
0.787in Dia Carbide drill - \$339.00 Production of 14,600 parts per year, Material – Ductile Iron

	Current	AWD
Speed/Feed	1102 rpm/13 ipm	1456 rpm/ 20 ipm
Cut time/part	12 secs	8 secs
Avg parts/tool	73	973
Tools needed	19	2
Regrinds	181	13
Cost per part	\$1.24	\$0.15
Tooling Cost/year	\$18,104	\$2,190



AWD




Customer example

	<u>Current</u>	<u>AWD</u>
Parts machined - new	1000	5000
Parts machined - regrind	1000	5000
Cost for regrind	internal	\$20
Tooling Cost/year	\$ 592	\$ 1795
Labor savings		50%

AWD Special Geometry removed burr problem.

AWD

Customer example

0.75in HSS drill - \$75.00 Production of 60,000 parts per year, Material – 1018 Steel 50 regrinds per tool

Comment

Current
400 rpm/5.8 ipm
500
250
\$15
\$ 0.063
\$ 3811.50

<u>AWD</u> 400 rpm/ 5.8 ipm 1500 \$30 \$ 0.021 \$ 1275.30

AWD

Thank You !

AWD Associates, Inc.

10560 Enterprise Dr. / Davisburg, Mi. USA 48350

<u>248-922-9898 / Fax 248-922-1227</u> www.awddrills.com

