

Principle

NC Helix Drill Milling, Drilling & Slotting

Cuts material by helical interpolation; serrated cutting edge minimizes chip length. Low spindle power is required, good for drilling material that generates long, soft chips.

Either linear or circular ramping.

Reduce Your Tool Inventory

Only six tools for making Ø.512"~Ø2.65" (Ø13~Ø65mm) hole from solid.

20

Each holder can machine different diameters and hole depths, saving your tool inventory and cost! No need to peck drill or dwell in operation, even without internal coolant.

Lower Spindle Power Consumption Easy to cut!

Principle

69

Universal

Benefi

Circular milling Ramping Angle

- Thanks to the small cutting load of the serrated cutting edge and helical interpolation, low power consumption of the spindle is required.
- Circular ramping milling, maximum ramping angle is 20°.
 For example: tool HD27 machining Ø1.969" (50 mm) hole, .354" (9 mm) pitch for aluminum, .236" (6 mm) pitch for carbon steel.

01

Feature
<Page 11>

Only six tools for drilling Ø.512"~Ø2.65" (Ø13~65mm)

- Outs by helical interpolation.
- Sech holder can machine different diameters and hole depths.

Special insert geometry for cutting different materials

- Serrated cutting edge makes the chips short and small, and easier to evacuate.
- Eliminate swarf and vibration problems while drilling difficult or deep holes.

One tool performs multiple applications

05

Feature

- Not only a drill, but an end mill too.
- Small radius path to cut a hole or step hole, various curved cavity shapes on different materials.

Functions in variable conditions

Plunge Drilling

Concave

Surfaces

Workpiece

Offset

Drilling

Angled

Opportunities

Strength

ures

Extraordinary

Stack

Drilling

Cross

Holes

Half hole on radius

Roughness Measuring

Workpiece

Workpiece

Offset Drilling

Make " One more turn" after reached the depth. Ex: G03 I-1.5 Z-30 P5 G03 I-1.5 <make one more turn > G01 X0 Y0 < afterward, let tool back to center of hole >

Flatness

Specification

Insert

NC2032 : For general purpose. Suitable for almost any material.

Top recommendation is 2xDc machining, high performance cutting.

NC5074 : For smooth cutting. It resolves the chatter from weak clamping

devices or low power machines.

Top recommendation is 3xDc or above. Also prevents chipping.

NC5074

Ordering code	Crede	Conting		D	imensior	IS	P Corrow	A Kow	* Max.	
Ordering d	oue	Grade	Coating		L	S	Re	Screw	/~ Key	Pitch
	NC2032	K20F	TiAIN		.187"	.071"	.008"	NS-18037		.118"
N9IVIX041002	NC5074	P40	AICrN		(4.75)	(1.8)	(0.2)	0.6 Nm)	INK-10	(3.0)
	NC2032	K20F	TiAIN		.226"	.079"	.012"	NS-20045		.177"
N9WIX051103	NC5074	P40	AICrN	Re	(5.75)	(2.0)	(0.3)	0.6 Nm)	INK-10	(4.5)
NONAXOZODOA	NC2032	K20F	TiAIN		.295"	.094"	.016"	NS-25045		.236"
N9WX070204	NC5074	P40	AICrN		(7.5)	(2.4)	(0.4)	7.97 InID. (0.9 Nm)	NK-17	(6.0)
	NC2032	K20F	TiAIN		.394"	.125"	.024"	NS-30072		.295"
N9IVIX 100306	NC5074	P40	AlCrN	•	(10.0)	(3.18)	(0.6)	(2.0 Nm)	NK-19	(7.5)
	NC2032	K20F	TiAIN	•	.492"	.156"	.031"	NS-35080		.354"
N9IVIX121308	NC5074	P40	AlCrN	•	(12.5)	(3.97)	(0.8)	∠∠.13 INID. (2.5 Nm)	INK-115	(9.0)

* Maximum pitch refers to maximum ramping angle. Please see page 6.

Holder Cylindrical Shank

Helical chip-removing groove >>

- Designed for CNC machines with external coolant
- Unique helical groove design generates chip-removing coolant stream.
- The helical groove is designed for the coolant to remove swarf from the cutting zone.
- For horizontal machining, it is necessary to increase coolant volume.

Fig.	Ordering Code	Туре	Capable of Dmin.	drill dia. mm Dmax.	Ød	ØDc	L	L1	Max. Depth	Insert type	* Max. ramping angle
	99321-010-1320	BC10-HD11-1320	.512" (13)	.787" (20)	.394" (10)	.433" (11)	3.150" (80)	1.575" (40)	1.181" (30)	N9MX04T002	20°
	99321-012-1525	BC12-HD13-1525	.591" (15)	.984" (25)	.472" (12)	.512" (13)	3.937" (100)	1.969" (50)	1.417" (36)	N9MX05T103	20°
1	99321-016-2030	BC16-HD17-2030	.787" (20)	1.181" (30)	.630" (16)	.669" (17)	4.331" (110)	2.362" (60)	1.969" (50)	N9MX070204	20°
	99321-020-2540	BC20-HD22-2540	.984" (25)	1.575" (40)	.787" (20)	.866" (22)	4.921" (125)	2.756" (70)	2.362" (60)	N9MX100306	20°
2 *	99321-025-3050	BC25-HD27-3050	1.181" (30)	1.969" (50)	.984" (25)	1.063" (27)	6.496" (165)	3.346" (85)	2.953" (75)		20°
	99321-025-4265	SL25-HD33-4265	1.654" (42)	2.559" (65)	.984" (25)	1.299" (33)	5.118" (130)	2.913" (74)	1.969" (50)	1910121300	9°

* 99321-025-4265 is Ø0.984" Side Lock Shank with internal coolant. * Maximum ramping angle refers to maximum pitch. Please see page 6.

3

Screw Fit Cutter

Internal Coolant

· Designed for CNC machines with internal coolant.

Туре

· Standard screw-fit body adapts to almost any kind of the screw-fit tool holder or extension bar in the market.

Dmin.

.512'

(13)

.591"

(15)

.787" (20)

.984"

(25)

1.181"

(30)

Capable of drill dia. mm

Dmax.

.787"

(20)

.984"

(25)

1.181" (30)

1.575"

(40)

1.969"

(50)

• Use for enlarge hole.

99323-010-1320 M05-HD11-1320

99323-012-1525 M06-HD13-1525

99323-016-2030 M08-HD17-2030

99323-020-2540 M10-HD22-2540

99323-025-3050 M12-HD27-3050

Ordering Code

Insert type

N9MX04T002

N9MX05T103

N9MX070204

N9MX100306

N9MX12T308

Max. ramping angle	
20°	E
20°	
20°	\sim

20°

20°

ଷ୍ଟ

Nine9

* Maximum ramping angle refers to maximum pitch. Please see page 6.

Extension Bar

Steel Type

- T is the maximum overhang length.
- With internal coolant hole.

Ordering Code	Туре	ØD	т	L	м
99801-10S	BC10-075M05S	.394" (10)	.984" (25)	2.953" (75)	M5
99801-12S	BC12-075M06S	.472" (12)	.984" (25)	2.953" (75)	M6
99801-16S	BC16-090M08S	.630" (16)	1.378" (35)	3.543" (90)	M8
99801-20S	BC20-100M10S	.787" (20)	1.575" (40)	3.937" (100)	M10
99801-25S	BC25-120M12S	.984" (25)	1.969" (50)	4.724" (120)	M12

Μ

EVA M08-BC 16-150I

ØD1

.394"

(10)

.472"

(12)

.630" (16)

.787"

(20)

.984"

(25)

.433"

(11)

.512"

(13)

.669" (17)

.866'

(22)

1.063"

(27)

Μ

M5

M6

M8

M10

M12

.787"

(20)

.984'

(25)

.984' (25)

1.181"

(30)

1.378"

(35)

DPM

.217" (5.5)

.256"

(6.5)

.335" (8.5)

.413"

(10.5)

492"

(12.5)

sw

.315"

(8)

394'

(10)

.551' (14)

.709'

(18)

.906'

(23)

Solid Carbide Type

- L
- Insert NC5074 is recommended for deep hole cutting.
- With internal coolant hole.

Ordering Code	Туре	ØD	L	м
398010-100M05	M05-BC10-100L	.394" (10)	3.937" (100)	M5
398012-100M06	M06-BC12-100L	.472" (12)	3.937" (100)	M6
398016-150M08	M08-BC16-150L	.630" (16)	5.906" (150)	M8
398020-200M10	M10-BC20-200L	.787" (20)	7.874" (200)	M10
398025-200M12	M12-BC25-200L	.984" (25)	7.874" (200)	M12

Technical Guide

Nine9

※ Before you start, please pay attention the following conditions >>

• The NC Helix Drill is programmed using "Helical interpolation" on CNC machine, the CNC controller must have 3-axis simultaneously motion function.

NC Helix Drill	Cutting Parameters (S & F)	Formula
	3.82 X SFM	Dc = Dia. of Drill Inch
	$S = \frac{DC}{DC}$ r.p.m.	D = Dia. of Hole Inch
	F = S x IPR IPM	L = Depth of Drilling Inch
	d = D – Dc Inch	Vc = Cutting Speed SFM
I	L = (D-Dc)	S = Spindle Speed r.p.m.
	2	I = Circular radius Inch
	Cutting time (T)	f = Feed rate IPR
	$T = \frac{\pi x d x L x 60}{\pi x d x L x 60}$ sec	F = Table feed rate IPM
i 🕂	FxP	d = Circular diameter (D-Dc) Inch
	Chip removal Volume rate (Q)	P = Pitch of helical interpolation Inch
	$Q = \frac{\pi x D^2 x L x 60}{\ln ch^3}$ Inch ³ /min.	T = Cutting time sec.
	- 4 x T	Q = Chip removal volume rate Inch ³ / min.
	Example	
Material	S45C (JIS)	
ΤοοΙ	99321-016-BC16-HD17, Dc= Ø0.669"	3 14 x 0 512 x 0 8 x 60
Insert	N9MX070204-NC2032	$T = \frac{0.14 \times 0.012 \times 0.014 \times 0.012}{22.93 \times 0.1575} = 21 \text{ sec.}$
D= Ø1.181", L= 0.8"		
S =	(3.82x 393.6) / 0.669" = 2248 r.p.m.	3.14 x 1.181 ² x 0.8 x 60
F = S x f	2248 x 0.0102 = 22.93 IPM	Q = = 2.503 ln. ³ /min.
P = 0.1575" (refer to cutting data P f	or Carbon Steel 0.45%C)	
d = D – Dc	1.181"- 0.669" = 0.512"	

3

Technical Guide

% Before you start, please pay attention the following conditions >>

A Choosing a suitable drill body.

- Required hole diameter is within the recommended range (blue numbers).
- Required hole diameters (more than one size), choose the drill can cover more different hole diameters. Example 0.709", 0.787" and 0.866" hole diameter, choose 99323-012-1525.
- Hole tolerance : 0/-0.02 inch.

Drilling diameter	Coolant type	Max. drilling depth	Tool type	Dc	Insert type	Re	Max. pitch	Max. Ae
510"~ 500 "~ 787"	Internal	3.150"	99323-010-1320	.433"		000"	110"	417"
.512 ~ .590 ~ .767	External	1.181"	99321-010-1320	.433"	1191012041002	.000	.110	.417
500"~ 787"~ 084"	Internal	3.346"	99323-012-1525	.512"		010"	177"	199"
.590 ~ .767 ~ .964	External	1.417"	99321-012-1525	.512"	1191017031103	.012	.177	.400
787"~ 084"~ 1 181"	Internal	4.134"	99323-016-2030	.669"		016"	236"	638"
.707 ~ .904 ~ 1.101	External	1.969"	99321-016-2030	.669"	11910170204	.010	.230	.050
084"~ 1 191"~ 1 575"	Internal	5.118"	99323-020-2540	.866"		004"	205"	810"
.904 * 1.101 ~ 1.975	External	2.362"	99321-020-2540	.866"	1191017100300	.024	.295	.019
1 181"~ 1 575"~ 1 969"	Internal	6.299"	99323-025-3050	1.063"		021"	254"	1 000"
1.101 ~ 1.575 ~ 1.505	External	2.953"	99321-025-3050	1.063"	1191017121300	.031	.554	1.000
1.654"~ 1.969"~ 2.559"	Internal	1.969"	99321-025-4265	1.299"	N9MX12T308	.031"	.354"	1.236"

A Choosing a suitable insert grade for hole drilling.

- NC2032 for drill depth below 3xDc.
- NC5074 for drill depth 3xDc and above.

A Length of tool path for linear ramping.

Cutting Data >> Boldface number is recommended for start.

▶99321-010-1320 / 99323-010-1320 >>

		S	FM	Ø.5	512"	Ø.!	551"	Ø.6	630 "	Ø.7	' 09''	Ø.7	' 87"
	workpiece material	99321	99323	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch
	Carbon steel 0.25%C	197 ~295~426	328 ~525~722	.0016 .0020 .0028	.0236 .0315 .0394	.0024 .0031 .0039	.0276 .0374 .0492	.0031 .0043 .0055	.0354 .0472 .0591	.0039 .0055 .0071	.0394 .0551 .0689	.0047 .0063 .0079	.0472 .0630 .0787
	Carbon steel 0.45% C	197 ~295~394	328 ~492~656	.0016 .0020 .0028	.0236 .0315 .0394	.0024 .0031 .0039	.0276 .0374 .0492	.0031 .0043 .0055	.0354 .0472 .0591	.0039 .0055 .0071	.0394 .0551 .0689	.0047 .0063 .0079	.0472 .0630 .0787
	Carbon steel 0.60%C	164 ~230~361	262 ~426~590	.0016 .0020 .0024	.0236 .0295 .0354	.0024 .0028 .0035	.0276 .0354 .0441	.0028 .0039 .0047	.0315 .0433 .0531	.0035 .0047 .0063	.0354 .0472 .0618	.0039 .0055 .0071	.0394 .0551 .0709
	Low alloy steel	131 ~230~328	262 ~394~525	.0012 .0016 .0020	.0197 .0256 .0315	.0020 .0024 .0031	.0236 .0315 .0394	.0028 .0039 .0047	.0276 .0374 .0472	.0031 .0043 .0059	.0315 .0433 .0551	.0035 .0047 .0063	.0394 .0512 .0630
	High alloy steel	131 ~197~262	197 ~295~394	.0012 .0016 .0020	.0197 .0256 .0315	.0020 .0024 .0031	.0236 .0315 .0394	.0028 .0039 .0047	.0276 .0374 .0472	.0031 .0043 .0059	.0315 .0433 .0551	.0035 .0047 .0063	.0394 .0512 .0630
I	Stainless steel	131 ~197~262	197 ~295~394	.0012 .0016 .0020	.0197 .0256 .0315	.0020 .0024 .0031	.0236 .0315 .0394	.0028 .0039 .0047	.0276 .0374 .0472	.0031 .0043 .0059	.0315 .0433 .0551	.0035 .0047 .0063	.0394 .0512 .0630
ŀ	Cast Iron	131 ~230~328	262 ~394~525	.0016 .0020 .0028	.0236 .0315 .0394	.0024 .0031 .0039	.0276 .0374 .0492	.0031 .0043 .0055	.0354 .0472 .0591	.0039 .0055 .0071	.0394 .0551 .0689	.0047 .0063 .0079	.0472 .0630 .0787
	AI	262 ~426~590	394 ~689~984	.0016 .0020 .0028	.0354 .0472 .0591	.0024 .0031 .0039	.0433 .0591 .0736	.0031 .0043 .0055	.0512 .0709 .0886	.0039 .0055 .0071	.0591 .0827 .1031	.0047 .0063 .0079	.0709 .0945 .1181
ľ	Cu	197 ~344~492	328 ~558~787	.0016 .0020 .0028	.0276 .0374 .0472	.0024 .0031 .0039	.0354 .0472 .0591	.0031 .0043 .0055	.0394 .0551 .0709	.0039 .0055 .0071	.0472 .0669 .0827	.0047 .0063 .0079	.0551 .0748 .0945
	Ni- Alloy	33 ~66~ 98	49 ~92~ 131	.0004 .0008 .0012	.0197 .0256 .0315	.0004 .0008 .0016	.0236 .0315 .0394	.0008 .0012 .0020	.0276 .0374 .0472	.0012 .0020 .0028	.0315 .0433 .0551	.0016 .0024 .0031	.0354 .0512 .0630
	Titanium	98 ~131~164	131 ~197~262	.0004 .0008 .0012	.0197 .0256 .0315	.0004 .0008 .0016	.0236 .0315 .0394	.0008 .0012 .0020	.0276 .0374 .0472	.0012 .0020 .0028	.0315 .0433 .0551	.0016 .0024 .0031	.0354 .0512 .0630

▶99321-012-1525 / 99323-012-1525 >>

		S	FM	Ø .5	590"	Ø.6	69"	Ø.7	' 87''	Ø.8	66"	Ø .9	84"
V	Vorkpiece material	99321 	99323	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch
	Carbon steel 0.25%C	197 ~295~426	328 ~525~722	.0020 .0028 .0035	.0472 .0630 .0787	.0028 .0039 .0051	.0512 .0701 .0886	.0035 .0051 .0063	.0591 .0787 .0984	.0047 .0063 .0079	.0630 .0858 .1083	.0051 .0071 .0087	.0709 .0945 .1181
	Carbon steel 0.45% C	197 ~295~394	328 ~492~656	.0020 .0028 .0035	.0472 .0630 .0787	.0028 .0039 .0051	.0512 .0701 .0886	.0035 .0051 .0063	.0591 .0787 .0984	.0047 .0063 .0079	.0630 .0858 .1083	.0051 .0071 .0087	.0709 .0945 .1181
Ρ	Carbon steel 0.60%C	164 ~230~361	262 ~426~590	.0020 .0024 .0031	.0433 .0591 .0709	.0028 .0035 .0043	.0472 .0634 .0795	.0031 .0047 .0059	.0512 .0701 .0886	.0039 .0055 .0071	.0551 .0764 .0972	.0047 .0063 .0079	.0630 .0846 .1063
	Low alloy steel	131 ~230~328	262 ~394~525	.0016 .0020 .0028	.0394 .0512 .0630	.0024 .0031 .0039	.0394 .0551 .0709	.0028 .0039 .0051	.0472 .0630 .0787	.0035 .0051 .0063	.0512 .0709 .0866	.0039 .0055 .0067	.0551 .0748 .0945
	High alloy steel	131 ~197~262	197 ~295~394	.0016 .0020 .0028	.0394 .0512 .0630	.0024 .0031 .0039	.0394 .0551 .0709	.0028 .0039 .0051	.0472 .0630 .0787	.0035 .0051 .0063	.0512 .0709 .0866	.0039 .0055 .0067	.0551 .0748 .0945
М	Stainless steel	131 ~197~262	197 ~295~394	.0016 .0020 .0028	.0394 .0512 .0630	.0024 .0031 .0039	.0394 .0551 .0709	.0028 .0039 .0051	.0472 .0630 .0787	.0035 .0051 .0063	.0512 .0709 .0866	.0039 .0055 .0067	.0551 .0748 .0945
к	Cast Iron	131 ~230~328	262 ~394~525	.0020 .0028 .0035	.0472 .0630 .0787	.0028 .0039 .0051	.0512 .0701 .0886	.0035 .0051 .0063	.0512 .0748 .0984	.0047 .0063 .0079	.0630 .0858 .1083	.0051 .0071 .0087	.0709 .0945 .1181
Ν	AI	262 ~426~590	394 ~689~984	.0020 .0028 .0035	.0709 .0945 .1181	.0028 .0039 .0051	.0787 .1059 .1327	.0035 .0051 .0063	.0866 .1173 .1476	.0047 .0063 .0079	.0945 .1283 .1622	.0051 .0071 .0087	.1063 .1417 .1772
	Cu	197 ~344~492	328 ~558~787	.0020 .0028 .0035	.0551 .0748 .0945	.0028 .0039 .0051	.0630 .0846 .1063	.0035 .0051 .0063	.0709 .0945 .1181	.0047 .0063 .0079	.0787 .1043 .1299	.0051 .0071 .0087	.0827 .1122 .1417
s	Ni- Alloy	33 ~66~ 98	49 ~92~ 131	.0008 .0010 .0012	.0394 .0512 .0630	.0012 .0016 .0020	.0394 .0551 .0709	.0012 .0018 .0024	.0472 .0630 .0787	.0016 .0024 .0031	.0512 .0709 .0866	.0016 .0024 .0031	.0551 .0748 .0945
	Titanium	98 ~131~164	131 ~197~262	.0008 .0010 .0012	.0394 .0512 .0630	.0012 .0016 .0020	.0394 .0551 .0709	.0012 .0018 .0024	.0472 .0630 .0787	.0016 .0024 .0031	.0512 .0709 .0866	.0016 .0024 .0031	.0551 .0748 .0945

Cutting Data >> Boldface number is recommended for start.

▶99321-016-2030 / 99323-016-2030 >>

-		S	FM	Ø .7	'87"	Ø.8	866"	Ø .9	84"	Ø1.()63"	Ø1.1	181"
V	Workpiece material	99321 	99323	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch
	Carbon steel 0.25%C	197 ~295~426	328 ~525~722	.0024 .0031 .0039	.0709 .0945 .1181	.0035 .0047 .0059	.0748 .1008 .1280	.0047 .0063 .0079	.0827 .1102 .1378	.0055 .0075 .0094	.0866 .1165 .1476	.0059 .0083 .0102	.0945 .1260 .1575
	Carbon steel 0.45% C	197 ~295~394	328 ~492~656	.0024 .0031 .0039	.0709 .0945 .1181	.0035 .0047 .0059	.0748 .1008 .1280	.0047 .0063 .0079	.0827 .1102 .1378	.0055 .0075 .0094	.0866 .1165 .1476	.0059 .0083 .0102	.0945 .1260 .1575
Ρ	Carbon steel 0.60%C	164 ~230~361	262 ~426~590	.0020 .0028 .0035	.0630 .0846 .1063	.0031 .0043 .0051	.0669 .0906 .1142	.0039 .0055 .0071	.0748 .1004 .1260	.0051 .0071 .0087	.0787 .1063 .1339	.0051 .0071 .0091	.0827 .1122 .1417
	Low alloy steel	131 ~230~328	262 ~394~525	.0020 .0024 .0031	.0551 .0748 .0945	.0028 .0039 .0047	.0591 .0807 .1024	.0035 .0051 .0063	.0630 .0866 .1102	.0043 .0059 .0075	.0709 .0945 .1181	.0047 .0063 .0079	.0748 .1004 .1260
	High alloy steel	131 ~197~262	197 ~295~394	.0020 .0024 .0031	.0551 .0748	.0028 .0039 .0047	.0591 .0807 .1024	.0035 .0051 .0063	.0630 .0866 .1102	.0043 .0059 .0075	.0709 .0945 .1181	.0047 .0063 .0079	.0748 .1004
М	Stainless steel	131 ~197~262	197 ~295~394	.0020 .0024 .0031	.0551 .0748 .0945	.0028 .0039 .0047	.0591 .0807 .1024	.0035 .0051 .0063	.0630 .0866 .1102	.0043 .0059 .0075	.0709 .0945 .1181	.0047 .0063 .0079	.0748 .1004 .1260
к	Cast Iron	131 ~230~328	262 ~394~525	.0024 .0031 .0039	.0709 .0945 .1181	.0035 .0047 .0059	.0748 .1016 .1280	.0047 .0063 .0079	.0827 .1102 .1378	.0055 .0075 .0094	.0866 .1173 .1476	.0059 .0083 .0102	.0945 .1260 .1575
	AI	262 ~426~590	394 ~689~984	.0024 .0031 .0039	.1063 .1417 .1772	.0035 .0047 .0059	.1102 .1512 .1917	.0047 .0063 .0079	.1220 .1594 .1969	.0055 .0075 .0094	.1299 .1752 .2205	.0059 .0083 .0102	.1417 .1890 .2362
	Cu	197 ~344~492	328 ~558~787	.0024 .0031 .0039	.0827 .1122 .1417	.0035 .0047 .0059	.0906 .1220 .1535	.0047 .0063 .0079	.0984 .1319 .1654	.0055 .0075 .0094	.1063 .1417 .1772	.0059 .0083 .0102	.1102 .1496 .1890
S	Ni- Alloy	33 ~66~ 98	49 ~92~ 131	.0008 .0012 .0016	.0551 .0748 .0945	.0012 .0020 .0024	.0591 .0807 .1024	.0016 .0024 .0031	.0630 .0866 .1102	.0016 .0028 .0035	.0709 .0945 .1181	.0020 .0031 .0039	.0748 .1004 .1260
	Titanium	98 ~131~164	131 ~197~262	0.0008 0.0012 0.0016	.0551 .0748 .0945	.0012 .0020 .0024	.0591 .0807 .1024	.0016 .0024 .0031	.0630 .0866 .1102	.0016 .0028 .0035	.0709 .0945 .1181	.0020 .0031 .0039	.0748 .1004 .1260

▶99321-020-2540 / 99323-020-2540 >>

		S	FM	Ø.9	984"	Ø1. ⁻	102"	Ø1.2	260"	Ø1.417"		Ø1.575"	
	Workpiece material	99321	99323	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch
	Carbon steel 0.25%C	197 ~295~426	328 ~525~722	.0028 .0039 .0047	.0709 .0945 .1181	.0039 .0055 .0067	.0827 .1102 .1378	.0055 .0075 .0091	.0945 .1260 .1575	.0067 .0091 .0110	.1063 .1417 .1772	.0071 .0094 .0118	.1181 .1575 .1969
	Carbon steel 0.45% C	197 ~295~394	328 ~492~656	.0028 .0039 .0047	.0709 .0945 .1181	.0039 .0055 .0067	.0827 .1102 .1378	.0055 .0075 .0091	.0945 .1260 .1575	.0067 .0091 .0110	.1063 .1417 .1772	.0071 .0094 .0118	.1181 .1575 .1969
F	Carbon steel 0.60%C	164 ~230~361	262 ~426~590	.0024 .0031 .0039	.0630 .0846 .1063	.0035 .0051 .0063	.0748 .1004 .1260	.0047 .0063 .0079	.0866 .1142 .1417	.0059 .0079 .0098	.0945 .1260 .1575	.0063 .0087 .0106	.1063 .1417 .1772
	Low alloy steel	131 ~230~328	262 ~394~525	.0020 .0028 .0035	.0551 .0748 .0945	.0031 .0043 .0055	.0669 .0886 .1102	.0039 .0055 .0071	.0748 .1004 .1260	.0051 .0071 .0087	.0866 .1142 .1417	.0055 .0075 .0094	.0945 .1260 .1575
	High alloy steel	131 ~197~262	197 ~295~394	.0020 .0028 .0035	.0551 .0748 .0945	.0031 .0043 .0055	.0669 .0886 .1102	.0039 .0055 .0071	.0748 .1004 .1260	.0051 .0071 .0087	.0866 .1142 .1417	.0055 .0075 .0094	.0945 .1260 .1575
N	A Stainless steel	131 ~197~262	197 ~295~394	.0020 .0028 .0035	.0551 .0748 .0945	.0031 .0043 .0055	.0669 .0886 .1102	.0039 .0055 .0071	.0748 .1004 .1260	.0051 .0071 .0087	.0866 .1142 .1417	.0055 .0075 .0094	.0945 .1260 .1575
ŀ	Cast Iron	131 ~230~328	262 ~394~525	.0028 .0039 .0047	.0709 .0945 .1181	.0039 .0055 .0067	.0827 .1102 .1378	.0055 .0075 .0091	.0945 .1260 .1575	.0067 .0091 .0110	.1063 .1417 .1772	.0071 .0094 .0118	.1181 .1575 .1969
	AI	262 ~426~590	394 ~689~984	.0028 .0039 .0047	.1063 .1417 .1772	.0039 .0055 .0067	.1220 .1634 .2047	.0055 .0075 .0091	.1417 .1890 .2362	.0067 .0091 .0110	.1575 .2106 .2638	.0071 .0094 .0118	.1772 .2362 .2953
ľ	Cu	197 ~344~492	328 ~558~787	.0028 .0039 .0047	.0827 .1122 .1417	.0039 .0055 .0067	.0984 .1319 .1654	.0055 .0075 .0091	.1142 .1516 .1890	.0067 .0091 .0110	.1260 .1693 .2126	.0071 .0094 .0118	.1417 .1890 .2362
5	Ni- Alloy	33 ~66~ 98	49 ~92~ 131	.0008 .0016 .0020	.0551 .0748 .0945	.0012 .0020 .0028	.0669 .0886 .1102	.0016 .0028 .0035	.0748 .1004 .1260	.0020 .0031 .0039	.0866 .1142 .1417	.0024 .0035 .0047	.0945 .1260 .1575
	Titanium	98 ~131~164	131 ~197~262	.0008 .0016 .0020	.0551 .0748 .0945	.0012 .0020 .0028	.0669 .0886 .1102	.0016 .0028 .0035	.0748 .1004 .1260	.0020 .0031 .0039	.0866 .1142 .1417	.0024 .0035 .0047	.0945 .1260 .1575

Cutting Data >> Boldface number is recommended for start.

▶99321-025-3050 / 99323-025-3050 >>

-		S	FM	Ø1.'	181"	Ø1.	378"	Ø1.	575"	Ø1.772"		Ø1.969"	
V	Vorkpiece material	99321 •	99323	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch
	Carbon steel 0.25%C	197 ~295~426	328 ~525~722	.0031 .0043 .0051	.0945 .1260 .1575	.0047 .0063 .0079	.1063 .1417 .1772	.0067 .0091 .0110	.1181 .1575 .1969	.0075 .0102 .0126	.1299 .1732 .2165	.0079 .0106 .0134	.1417 .1890 .2362
	Carbon steel 0.45% C	197 ~295~394	328 ~492~656	.0031 .0043 .0051	.0945 .1260 .1575	.0047 .0063 .0079	.1063 .1417 .1772	.0067 .0091 .0110	.1181 .1575 .1969	.0075 .0102 .0126	.1299 .1732 .2165	.0079 .0106 .0134	.1417 .1890 .2362
Ρ	Carbon steel 0.60%C	164 ~230~361	262 ~426~590	.0028 .0039 .0047	.0866 .1142 .1417	.0039 .0055 .0071	.0945 .1260 .1575	.0059 .0079 .0098	.1063 .1417 .1772	.0067 .0091 .0110	.1181 .1575 .1969	.0071 .0094 .0118	.1260 .1693 .2126
	Low alloy steel	131 ~230~328	262 ~394~525	.0024 .0031 .0039	.0748 .1004 .1260	.0035 .0051 .0063	.0866 .1142 .1417	.0051 .0071 .0087	.0945 .1260 . 1575	.0059 .0079 .0098	.1024 .1378 .1732	.0063 .0087 .0106	.1142 .1516 .1890
	High alloy steel	131 ~197~262	197 ~295~394	.0024 .0031 .0039	.0748 .1004 .1260	.0035 .0051 .0063	.0866 .1142 .1417	.0051 .0071 .0087	.0945 .1260 .1575	.0059 .0079 .0098	.1024 .1378 .1732	.0063 .0087 .0106	.1142 .1516 .1890
М	Stainless steel	131 ~197~262	197 ~295~394	.0024 .0031 .0039	.0748 .1004 .1260	.0035 .0051 .0063	.0866 .1142 .1417	.0051 .0071 .0087	.0945 .1260 .1575	.0059 .0079 .0098	.1024 .1378 .1732	.0063 .0087 .0106	.1142 .1516 .1890
к	Cast Iron	131 ~230~328	262 ~394~525	.0031 .0043 .0051	.0945 .1260 .1575	.0047 .0063 .0079	.1063 .1417 .1772	.0067 .0091 .0110	.1181 .1575 .1969	.0075 .0102 .0126	.1299 .1732 .2165	.0079 .0106 .0134	.1417 .1890 .2362
N	AI	262 ~426~590	394 ~689~984	.0031 .0043 .0051	.1417 .1890 .2362	.0047 .0063 .0079	.1575 .2106 .2638	.0067 .0091 .0110	.1772 .2362 .2953	.0075 .0102 .0126	.1929 .2579 .3228	.0079 .0106 .0134	.2126 .2835 .3543
	Cu	197 ~344~492	328 ~558~787	.0031 .0043 .0051	.1142 .1516 .1890	.0047 .0063 .0079	.1260 .1693 .2126	.0067 .0091 .0110	.1417 .1890 .2362	.0075 .0102 .0126	.1575 .2087 .2598	.0079 .0106 .0134	.1693 .2264 .2835
s	Ni- Alloy	33 ~66~ 98	49 ~92~ 131	.0008 .0016 .0020	.0748 .1004 .1260	.0016 .0024 .0031	.0866 .1142 .1417	.0024 .0035 .0047	.0945 .1260 .1575	.0024 .0035 .0047	.1024 .1378 .1732	.0028 .0043 .0055	.1142 .1516 .1890
	Titanium	98 ~131~164	131 ~197~262	.0008 .0016 .0020	.0748 .1004 .1260	.0016 .0024 .0031	.0866 .1142 .1417	.0024 .0035 .0047	.0945 .1260 .1575	.0024 .0035 .0047	.1024 .1378 .1732	.0028 .0043 .0055	.1142 .1516 .1890

▶ 99321-025-4265 >>

Workpiece material		SFM	Ø1.	654"	Ø1.9	969"	Ø2.165"		Ø2.362"		Ø2.559"	
		99323	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch	f IPR	Pitch Inch
Ρ	Carbon steel 0.25%C	328 ~ 525 ~ 722	.0047 .0063 .0079	.1181 .1575 .1969	.0059 .0079 .0094	.1220 .1634 .2047	.0071 .0094 .0118	.1299 .1732 .2165	.0075 .0102 .0126	.1339 .1791 .2244	.0079 .0106 .0134	.1417 .1890 .2362
	Carbon steel 0.45% C	328 ~ 492 ~ 656	.0047 .0063 .0079	.1181 .1575 .1969	.0059 .0079 .0094	.1220 .1634 .2047	.0071 .0094 .0118	.1299 .1732 .2165	.0075 .0102 .0126	.1339 .1791 .2244	.0079 .0106 .0134	.1417 .1890 .2362
	Carbon steel 0.60%C	262 ~ 426 ~ 590	.0043 .0059 .0071	.1063 .1417 .1772	.0051 .0071 .0087	.1102 .1476 .1850	.0063 .0087 .0106	.1181 .1575 .1969	.0067 .0091 .0114	.1181 .1594 .2008	.0071 .0094 .0118	.1260 .1693 .2126
	Low alloy steel	262 ~ 394 ~ 525	.0039 .0051 .0063	.0945 .1260 .1575	.0043 .0059 .0075	.0984 .1319 .1654	.0055 .0075 .0094	.1024 .1378 .1732	.0059 .0079 .0098	.1102 .1457 .1811	.0063 .0087 .0106	.1142 .1516 .1890
	High alloy steel	197 ~ 295 ~ 394	.0039 .0051 .0063	.0945 .1260 .1575	.0043 .0059 .0075	.0984 .1319 . 1654	.0055 .0075 .0094	.1024 .1378 . 1732	.0059 .0079 .0098	.1102 .1457 . 1811	.0063 .0087 .0106	.1142 .1516 . 1890
М	Stainless steel	197 ~ 295 ~ 394	.0039 .0051 .0063	.0945 .1260 .1575	.0043 .0059 .0075	.0984 .1319 .1654	.0055 .0075 .0094	.1024 .1378 .1732	.0059 .0079 .0098	.1102 .1457 .1811	.0063 .0087 .0106	.1142 .1516 .1890
к	Cast Iron	262 ~ 394 ~ 525	.0047 .0063 .0079	.1181 .1575 .1969	.0059 .0079 .0094	.1220 .1634 .2047	.0071 .0094 .0118	.1299 .1732 .2165	.0075 .0102 .0126	.1339 .1791 .2244	.0079 .0106 .0134	.1417 .1890 .2362
N	AI	394 ~ 689 ~ 984	.0047 .0063 .0079	.1772 .2362 .2953	.0059 .0079 .0094	.1850 .2461 .3071	.0071 .0094 .0118	.1929 .2579 .3228	.0075 .0102 .0126	.2047 .2717 .3386	.0079 .0106 .0134	.2126 .2835 .3543
N	Cu	328 ~ 558 ~ 787	.0047 .0063 .0079	.1417 .1890 .2362	.0059 .0079 .0094	.1496 .1988 .2480	.0071 .0094 .0118	.1575 .2087 .2598	.0075 .0102 .0126	.1614 .2165 .2717	.0079 .0106 .0134	.1693 .2264 .2835
S	Ni- Alloy	49 ~ 92 ~ 131	.0016 .0024 .0031	.0945 .1260 .1575	.0020 .0031 .0039	.0984 .1319 .1654	.0024 .0035 .0047	.1024 .1378 .1732	.0024 .0039 .0051	.1102 .1457 .1811	.0028 .0043 .0055	.1142 .1516 .1890
Ĩ	Titanium	131 ~ 197 ~ 262	.0016 .0024 .0031	.0945 .1260 .1575	.0020 .0031 .0039	.0984 .1319 .1654	.0024 .0035 .0047	.1024 .1378 .1732	.0024 .0039 .0051	.1102 .1457 .1811	.0028 .0043 .0055	.1142 .1516 .1890

Application Example

Special insert geometry for cutting different materials>>

- · Serrated cutting edge makes the chips short and small, and easier to evacuate.
- Recommended for almost all material types, good for drilling material that generates long, soft chips.

To cut Titanium in different conditions >>

			Exam	ple 2								
	Mate	rial	Ti6Al4V, Titanium									
	Tool			99323-01	6-2030 N	108-HD17	-2030					
	Insert			N9MX07	0204-NC2	032						
	Machine		HAAS VM-3, BT40, 22.5KW									
	Cool	ant		Internal								
	Fig.	Dc Inch	D Inch	L	Vc SFM	S r.p.m	f IPR	F IPM	P Inch	T sec.		
	1	_ Ø.669	Ø1.201	.787	196.8	1200	.0020	2.4	.079	423		
	2		Ø .807	.787	196.8	1200	.0012	1.44	.039	366		
	3		Ø .787	1.969	196.8	1200	.0012	1.44	.039	785		
	5		Ø .787	.787	196.8	1200	.0020	2.4	.079	94		
TIGAI4V				2		3						
	Count for M	ter sink 20 bolt	For bolt	M20 hole	Cross	s hole	Surfa	acing	Half on ra	hole adius		

▶ To produce step hole Ø2.106" & Ø1.772" with one tool >>

			Exa	mple 3								
	Mate	erial		S50C (JIS). High carbon steel								
A	Tool			99323-LS32-HD40 (Non-standard size)								
HHER	Insert			N9MX12T308-NC2032								
	Machine			BT40, 22.5 Kw								
	Coolant			Internal								
	Hole	Dc Inch	D Inch	L Inch	Vc sfm	S r.p.m	f IPR	F IPM	 Inch	P Inch	T sec.	
	Α	04 F7F	Ø2.106	.394	984	2400	.0059	14.16	.266	.197	14	
	В	01.575	Ø1.772	1.260	984	2400	.0059	14.16	.098	.079	42	
Application • Hydraulic port for plug-in valve cylinders, counterbore for bolt, and more!		OP 1		<u>I = .066</u>	," Ø1.575" Ø2.106)P -(- 2 -		<u>.09</u> 8" Tool Ø1. <u>(</u> Hole Ø1.	57 <u>5"</u> 772"	

• Each holder "NC Helix Drill" can machine different diameters and hole depths.

Producing a Ø2.362" x 1.063" hole with just one tool. Eliminates 2nd operation from the process. Machine load 8%. >>

Example 4															
	Mate	Material			Stainless Steel SUS304										
	Tool			99321-025-4265 (25mm Side Lock Shank)											
	Inse	rt		N9MX12T308-NC2032											
	Мас	hine		BT40											
	Coo	lant		External	coolant										
an	Dc	D	L	Vc	S	f	F	l	P	Т	Q				
(A)	Inch	Inch	Inch	SFIM	r.p.m	IPR	IPINI	Inch	Inch	sec.	in.º /min.				
	Ø1.299	Ø2.362	1.063	328	1000	.0079	7.90	.531	.157	172	1.624				

Requires low spindle power! BT30 machine, Ø1.181" hole diameter, 3.3xDc drill depth >>

			Exam	ple 5								
Maximum drilling capacity of the 5.5 kw spindle is Ø0.63"												
	Mate	S50C (JIS), High carbon steel										
	Tool			99321-020-2540 / BC20-HD22-2540								
	Inser	t		N9MX100306-NC2032								
	Machine			BT30, 5.5 Kw								
	Cool	ant		External coolant								
	Dc	D	L	Vc	S	f	F	1	Р	Т		
	Inch	Inch	Inch	SFM	r.p.m	IPR	IPM	Inch	Inch	sec.		
	Ø .866	Ø1.181	2.756	656	* 2893	.0079	22.85	.157	.110	62		
	* 3000	r.p.m. is u	ised.									

Drill bigger holes using lower power spindles. Increase flexibility and occupy fewer tool positions in CNC machines.

Replace your end mill with an NC helix drill. Make the impossible become possible >>

			Exampl	e 6								
Tool Path : 2.047"		Rough Slotting										
	Slot D	imension		W: 0.669" x 0.709" x 2.756"								
6	Materi	al		S45C (JIS), Medium Carbon Steel								
	Tool			99323-016-2030 M08-HD17-2030								
	Insert			N9MX070204-NC2032								
	Machi	ne		BT40								
	Coola	nt		Internal coolant, emulsion								
.079"	Dc Inch	L	Vc SFM	S r.p.m	f IPR	F IPM	P Inch	T sec.	Q In. ³ /min.			
	Ø .669	2.756	656	3800	.0039	14.82	.157*	91	2.075			
	* Ramp	* Ramping depth per cut = 0.079"										
Notob of Tool Dath 15 020"				Der	wh Clat	tine er						

Notch of Tool Path : 5.039"				Rough Slotting							
	Slot Di	mension		W: 1.575" x 0.984" x2.756"							
	Materia	al		C95400, Aluminium Bronze							
	Tool			99323-020-2540 M10-HD22-2540							
	Insert			N9MX100306-NC2032							
	Machir	ne		HAAS BT40							
	Coolar	nt		External / Internal coolant							
	Dc	L	Vc	S	f	F	Р	т	Q		
984, ¹	Inch	Inch	SFM	r.p.m	IPR	IPM	Inch	sec.	In. ³ /min.		
	Ø .866	.984	1148	5000	.0079	39.50	.197	23	12.937		

▶ One tool performs multiple patterns. >>

			Example	e 7								
	Mate	rial	AL6061T6									
	Tool		99323-016-2030 M08-HD17-2030									
12	Insert		N9MX070204-NC5074									
	Machine		HAAS VM-3, BT40, 22.5KW									
	Coolant		Internal									
	Fig.	Dc Inch	Vc SFM	S r.p.m	f IPR	F IPM	P Inch	T sec.				
3 4	1	Ø .669	656	3800	.0059	22.42	.157	67				
	2		656	3800	.0059	22.42	.157	80				
	3		656	3800	.0059	22.42	.157	95				
	4		656	3800	.0059	22.42	.197	101				
Tool Path 1	2			3		4						

Not only a drill, but an end mill too. Maximum ramping angle is 20°. Small radius path to cut holes, countersink holes, and create various cavity shapes in different materials.

Less inventory of different sizes of drills and indexable end mills, NC Helix Drill cuts it all !

No Need To Choose Nine9 Does It All

