

Contour Deburring Tools

For All Purpose Front and Back Deburring Of Through Holes In a Single Pass

TOOL CORPORATION

COFA Deburring Tool

The HEULE COFA deburring tool removes burrs from the front and back of a drilled through hole in a single pass without stopping or reversing the spindle. Whether you are deburring a flat surface or irregular surface, the edge break is always consistent.

Deburr Elliptical Holes

The COFA tool will deburr the contours of an elliptical hole when two holes intersect or a hole is not perpendicular to the surface. The COFA with a standard blade can be used when the larger intersecting hole is two or more times the smaller or for surfaces up to 15°. Deburr more extreme contours by using the new 30° blade with extra clearance relief.

Radiused Edge Breaks on Flat Parts

Deburr the front and back of any through hole with a smooth tapered edge break to relieve stress points and sharp corners. Use the new blade with 10° clearance relief for better tool life when deburring flat parts.

Wide Range of Tools

COFA tools are available from stock for immediate delivery in sizes from 4mm to 41mm (.157" to 1.614"). The COFA cassette is also in stock for deburring even larger holes quickly and efficiently.

How Does The COFA Tool Work?

As the rotating tool is fed into the hole, the front cutting edge deburrs the top of the hole and the blade rocks upwards. The result is a tapered, radiused edge break.

When the blade is in the hole, only the ground and polished non-cutting ball touches the surface protecting it from damage while the tool is fed through the part. There is no need to stop or reverse the spindle.

When the blade reaches the bottom of the part, it springs back into cutting position and the back cutting edge deburrs the bottom of the hole as the tool is withdrawn. When the blade is inside the hole, the tool can be rapid fed out and on to the next hole.

Back Cutting Edge

Front Cutting Edge

Benefits: Reduced Cycle Time - Carbide Coated blades run faster and longer. Simple to use - No operator adjustments necessary. Availability - All tooling is in stock, all tools in a series use a common blade. Consistency - Blades cannot over cut so edge breaks are consistent. Quality - Tapered, radiused edge break is superior to hand benching and other edge break methods.

Before & After

This 4140 hardened steel component was drilled leaving a heavy burr and an end cap attached to most of the holes. Using a COFA12-502-Z tool the end caps were knocked off, the burr removed, and a 0.015" edge break was cut. With clean edges the part is ready for assembly.

Replaceable Blades

Automotive

Aerospace

Power Generation

Heavy Equipment

General Machining

Medical

Oil & Gas

The Assembly Pin included with each tool is used to quickly remove the roll pin that retains the carbide cutting blade.

- Roll pins are reusable.
- Use the assembly pin to remove and install the cutting blade.
- Blades are carbide with TiN or TiCN coating for higher rpm's and longer life.

Common	Min Hole	Approx.	ORDER NUMBER
Diameter	00 mm/inch	Cutting	
Diametei	Md Ød	an	Series /
4 0mm	4 0 157	4 5 177	
1.011111	4.0 .161	4.6 181	COFA4-4 1-
	4.2 165	4.7 185	COFA4-4.2-
	4.3 .169	4.8 .189	COFA4-4.3-
	4.4 .173	4.9 .193	COFA4-4.4-
4.5mm	4.5 .177	5.0 .197	COFA4-4.5-
	4.6 .181	5.1 .201	COFA4-4.6-
3/16″	4.7 .185	5.2 .205	COFA4-4.7-
	4.8 .189	5.3 .209	COFA4-4.8-
	4.9 .193	5.4 .213	COFA4-4.9-
	Ød	ØD	Series 5
5.0mm	5.0 .197	5.7 .224	COFA5-5.0-
	5.1 .201	5.8 .228	COFA5-5.1-
	5.2 .205	5.9 .232	COFA5-5.2-
	5.3 .209	6.0 .236	COFA5-5.3-
	5.4 .213	6.1 .240	COFA5-5.4-□
5.5 <i>mm</i>	5.5 .217	6.2 .244	COFA5-5.5-
	5.6 .220	6.3 .248	COFA5-5.6-
	5.7 .224	6.4 .252	COFA5-5.7-
	5.8 .228	6.5 .256	COFA5-5.8-
	5.9 .232	6.6 .260	COFA5-5.9-
	Ød	ØD	Series 6
<i>6.0mm</i>	6.0 .236	6.7 .264	COFA6-236-
1/4″	6.2 .244	6.9 .272	COFA6-244-
	6.4 .252	7.1 .279	COFA6-252-
	6.6 .260	7.3 .287	COFA6-260-
	6.8 .268	7.5.295	
7.0mm	7.0.276	7.7 .303	
	1.2 .284	7.9 .311	
	7.4.291	8.1 .319	COFA6-291-
- 14 6 11	7.6.299	8.3 .327	COFA6-299-
5/16"	7.8.307	8.5 .335	
	8.0 .315	8.7 .342	COFA6-315-

How to Order:

Ordering is easy! For example, to deburr only the back of a $\emptyset 1/4$ " hole in Aluminum order the following:

Spring Choice:

The cutting force of the COFA tool is controlled by a flat spring. Choose the proper spring for the material being machined.

Spring Code		Typical Materials Large or heavy burrs may require a stronger spring			
W	ter	Aluminum, Brass, Magnesium			
Н	- Sof	Grey Cast Iron, Nodular Iron,			
S		Carbon Steel, Free Machining Steel			
Z		Long Chipping Steel, Stainless			
Z1	•	Titanium, Hardened Steel, Nickel Alloy			
Z2	- der	Nickel Alloy, etc (not avl. for series 4&5)			
Z3	Hai	Nickel Alloy, etc (not avl. for series 4&5)			

Cutting Blade Choice:

Blades are available as front and back cutting (fab) or back cutting only (bco).

		-					
Blade		Series	4	5	6	8	12
Code		Geo.	Blade Order Number: GH-C-M-				
	TiN 20°	fab	-0504	-0505	-0002	-0003	-0007
b	Standard	bco	-0914	-0915	-0012	-0013	-0017
у	TiCN 10°	fab	-0744	-0745	-0442	-0443	-0447
yb	Flat Surfaces	bco	-0854	-0855	-0452	-0453	-0457
Х	TiN 30°	fab	-0148	-0150	-0142	-0133	-0105
xb	Uneven Spec	bco	-0182	-0184	-0143	-0131	-0104

Use standard 20° blades for most applications.

Use 10° blades for flat surfaces for improved cutting edge strength. Only use 30° for extremely uneven surfaces (from 15° to 30° slopes) because the cutting edge strength is reduced.

1 2 3 4 5* 6 Roll Retainer Assembly Retainer W Н S Ζ2 Ζ3 Pin Block Screw Pin Pin Ζ Ζ1 GH-C-E-GH-C-E-GH-H-S-GH-C-V-GH-H-S-Spring GH-C-E-COFA4 -0819 -0344 -0345 -0346 -0206 -0902 -0342 -0343 COFA5 -0820 -0211 -0902 -0352 -0353 -0354 -0355 -0356 -0811 -0126 -0323 -0325 COFA6 -0812 -0803 -0321 -0322 -0324 -0326 -0327 COFA8 -0810 -0808 -0517 -0111 -0331 -0332 -0333 -0334 -0335 -0336 -0337 -0801 -0100 -0362 -0363 -0364 -0365 -0366 -0367 COFA12 -0800 -0530 -0361

* The COFA4 and COFA5 tools use the retainer pin to secure the spring.

Spare Parts:

	COFA4	COFA5	COFA6 COFA8		COFA12	
ØS	Ø6mm	Ø6mm	Ø1/4"	Ø 5/16"	Ø1/2"	
OAL	70 2.756	75.5 2.972	100 <i>3.937</i>	120 <i>4.724</i>	140 <i>5.512</i>	
L1	3.05 .120	3.8 .149	2 .079	2.5 .098	4 .157	
L2	4.35 .171	5.4 .213	4 .157	5.5 .217	8 .315	
L3	28 1.102	32.6 <i>1.283</i>	56 2.205	74 2.913	81 <i>3.189</i>	
Ls	36 <i>1.417</i>	36 1.417	38 1.496	38 1.496	47 1.850	
ØD2	Ød+1.2	Ød+1.6	Ød+1.9	Ød+2.7	Ød+3.8	
Ød1	Ød min-0.	1 (.004")	Ød min-0.2 <i>(.008")</i>			

Programming Information

	COFA4	COFA	\5	CC	FA6	COF	A8	COFA12
A	2 .079	2.8 .110	2.8 .110 .0		1)39	1.5 .059		3 .118
В	5.5 .217	7 .270	6	5	5. 5 217	7 .27	10 6 .394	
C	5.5 .217	6.9 .272		6 .236		8 .315		12 .472
D	5.3 .209	6.4 .252		5 .197		6.5 .256		9 .354
E	1.8 .071	2.2 .08	2 (87 .0		1 .5 020	0		2 .079
Feed:	-eed: 0.006"-0.014" IPR. Depending upon the material and machine rigidity, the feed rate can be increased							
Speed:	Typical Ma	aterial	b	nn	Flat surface		Une	even surface
SFM	alumini	um	30-	180	160	160-400		120-200
	iron	າ 18		80	90-260			50-130
	low carbor	on steel 100		-200	190-340			120-160
	med carbo	n steel 125-		-250	120-240			90-130
	stainless steel		140	-250	60-	140		40-90
	Cast steel			00	110	-240		90-150
	Titanium				20-80		20-35	
	Nickel alloys		220	-310	20-80 1		15-30	

Use slower speeds as the part geometry becomes more uneven. COFA tools are not intended to be used on threaded holes or interrupted cuts. To change edge break size ØD choose a larger or smaller tool.

Common	Min Hole	Approx.	ORDER NUMBER	
Diamotor	00 mm/inch	Cutting		
Diameter			Soriao 9	
0.0				
8.0mm	0.0 .313	9.0.304		
	0.2 .323	9.2.302		
11/22"	0.4 .331	9.4 .370		
11/32	0.0 .339	9.0.378		
0.0	0.0.340	9.0.300		
9.0mm	9.0.304	10.0.394		
2/0″	9.2.302	10.2 .402		
3/8	9.4.370	10.4 .409		
	9.0.370	10.0 .417		
10.0	9.0.300	10.0 .420		
10.0mm	10.0.394	11.0 .433		
	10.2.402	11.2 .441		
	10.4 .409	11.4 .449		
	10.0 .41/	11.0 .45/		
7/1/2 //	10.8.423	11.0 .400		
//16	11.0 .433	12.0 .4/3		
	11.2 .441	12.2 .480		
	11.4 .449	12.4 .488	CUFA8-449-	
	11.6 .457	12.6 .496		
12.0	11.8.405	12.8.504	CUFA8-465-	
12.0mm	12.0 .4/3	13.0 .572		
	12.2 .480	13.2 .520		
1/0"				
1/2	12.4 .400	13.0 .343		
	12.0 .304	14.2 .009		
	13.2 .320	14.0 .373		
0/16"	13.0 .550	15.0 .097	COFA12-550-	
9/10	14.0 .007	15.4 .000		
15 0 10 10	14.4 .007	10.0 .022		
15.0mm	14.0 .000	10.2 .030	COFA12-505-	
5/9"	15.6 61/	10.0 .004 17.0 .660		
5/0	15.0 .014	17.0 .009 17.1 .695		
	16.0 .030	17.4 .000 17.9 701		
	10.4 .040	17.0 .707 10.9 .717	COFA12-040-	
11/16"	10.0 .002 17.9 .677	10.2 ./ //		
11/10	17.6 602	10.0 .732		
10 0	10.0 200	13.0 ./40	COEA12 700	
10.0mm	10.0.709	13.4 ./04	COEA12-709-	
2/1/"	10.4 .720	13.0 ./00 20.2 .705		
3/4	10.0 ./40	20.2./90		
	19.2 ./00	20.0 .011	COEA12-730-	
20.0	19.0 .//2 20 0 707	21.U.ÖZ/	COEA12-772-	
20.0mm	20.0 ./8/	21.4 .843	00FA12-788-	

Tools from 21mm to 41mm are available from stock. Visit www.heuletool.com for details of these tools and the COFA cassette for even larger holes.

HEULE HEULE HEULE

TOOL CORPORATION

Heule Tooling Systems

HEULE manufactures cutting tools of the highest quality and precision consistent with Swiss craftsmanship for use in the machine tools of some of the world's largest manufactures; and the smallest machine shops.

L

Reg. Nr. 14757

COFA

Universal deburring tool for even deburring on uneven surface

ine

Automatic front and back spotfacing systems

SNAP

Simple and economical front and back deburring tool

Precision, chatterfree countersinks

SOLO

Reliable automatic front and back counterboring and spotface tool

Adjustable front and back chamfering tool

Combi

Combine the latest technology for producing holes with our deburring and chamfering system *Let Heule technology solve your finishing problems - call today.*

Heule Tool Corporation 4722 A Interstate Drive Cincinnati, Ohio 45246 Tel: (513) 860-9900 Fax: (513) 860-9992 Email: *info@heuletool.com www.heuletool.com*