

GHIPOSURF SERIES 450

When assembling, be sure carbide tip is seated firmly on shank with no gap. Recommended axial depth of cut is .005" per step down.

HARDWARE		QT TO
Thread Size	Wrench	Optional Torque Wrench
T05	WS-0043	DT-60-04

OPERATING GUIDELINES

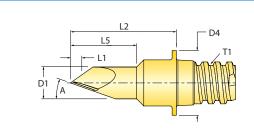
CARBIDE ENGRAVING TIP Series 450, 460

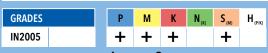
	Workpiece Material	cutting speed Vc in/min	feed per tooth fz (in)
P	Steel	400-600	.001002
P	Tool steel	300-500	.001002
M	Stainless steel	250-400	.001002
K	Gray cast iron	400-700	.001002
S	Super alloys	100-200	.001002
N	Aluminum	1000-2500	.001002
	Copper	250-450	.001002

Note: Feed and speed recommendations are starting operating parameters. They are only guidelines from which further optimization should take place. Operating parameters are influenced by many machining variables. These variables may cause for reductions in feeds and speed or dramatic increases. Additionally, DOC and WOC may need to be revised to optimize the tools performance.

CHIPOSURFAR SERIES 460

SOLID CARBIDE FINE ENGRAVING TIP





Cutter Number	T1 Thread Size	A Nominal Chamfer Angle	D1 Nominal Diameter	Eff. Flutes	L1 Length of Cut	L2 Extension Length	D4 Neck Diameter	L5 Length
46Q-1550TQRA60 IN2005	T05	30	0.150	1	0.02	0.500	0.30	0.313

When assembling, be sure carbide tip is seated firmly on shank with no gap. Recommended axial depth of cut is .002" per step down.

HARDWARE		OT TO
Thread Size	Wrench	Optional Torque Wrench
T05	WS-0043	DT-60-06

OPERATING GUIDELINES

CHIPPEURFER, - SOLID CARBIDE ENGRAVING TIP Series 450, 460

	Workpiece Material	cutting speed Vc in/min	feed per tooth fz (in)	
P	Steel	400-600	.001002	
P	Tool steel	300-500	.001002	
M	Stainless steel	250-400	.001002	
K	Gray cast iron	400-700	.001002	
S	Super alloys	100-200	.001002	
N	Aluminum	1000-2500	.001002	
	Copper	250-450	.001002	

Note: Feed and speed recommendations are starting operating parameters. They are only guidelines from which further optimization should take place. Operating parameters are influenced by many machining variables. These variables may cause for reductions in feeds and speed or dramatic increases. Additionally, DOC and WOC may need to be revised to optimize the tools performance.

JOB-048

