

KPK Series

COMPLETE METALWORKING SOLUTIONS (800) 991-4225 www.ahbinc.com

(800) 991-4225 ISO Certified

customerservice@ahbinc.com

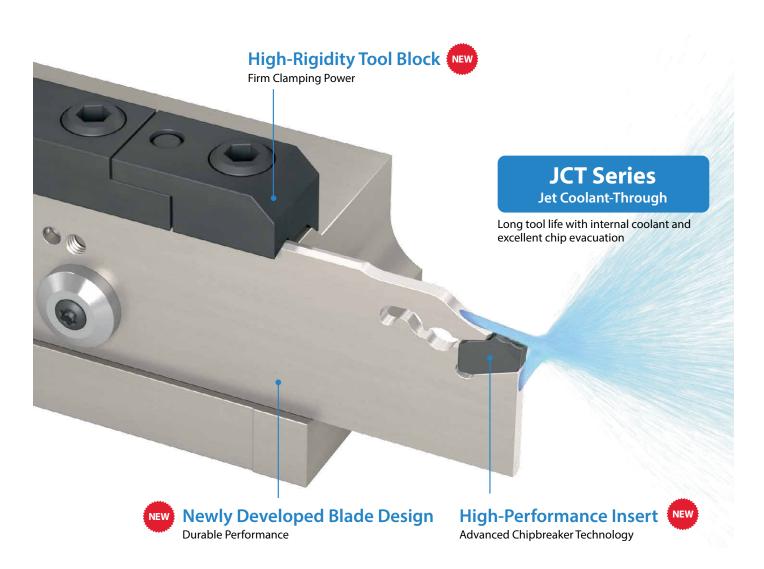
High-Performance Cut-Off Solutions

Unique Design for Superior Performance in Cut-Off Operations

High-Performance Cut-Off Solutions

Easy Insert Replacement Reduces Downtime High-Performance, Long Tool Life and Stable Machining with Strong Clamping Mechanism

CUT-OFF SOLUTIONS

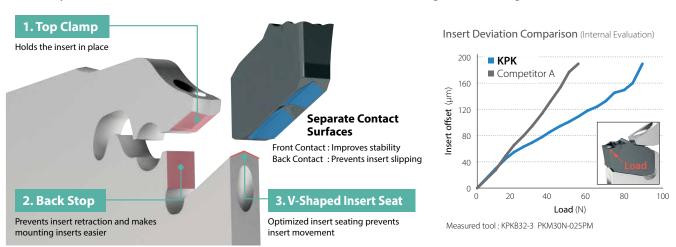

During cut-off operations, insert cutting widths of only a few millimeters are used to cut to the center of the workpiece. This is usually the final process and is often the bottleneck. Stable tool life without sacrificing productivity is required.

CHALLENGE

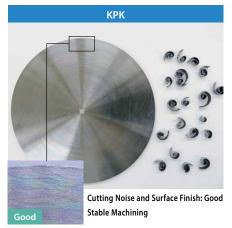
Due to the narrow insert and blade widths, rigidity is difficult to achieve. Cutting speed reaches zero at the center of the workpiece, increasing cutting load. Chip control issues and tool damage are common problems.

SOLUTION

The KPK Series features new insert, blade, and tool block designs for rigid, safe, and secure cut-off operations.



1 Easy Insert Replacement



2 Firm Insert Clamp Ensures Added Safety and Security

The firmly secured insert uses three contact surfaces to eliminate sliding or chattering

Cutting Performance Comparison (Internal Evaluation)

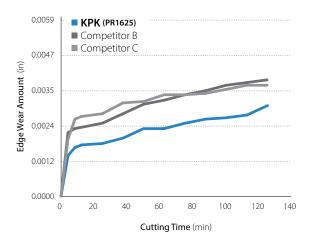
Unique Chipbreaker Designs for Long Tool Life and Stable Machining

Advanced chipbreaker technology inherited from KGD lineup provides excellent chip control

PM Chipbreaker General Purpose

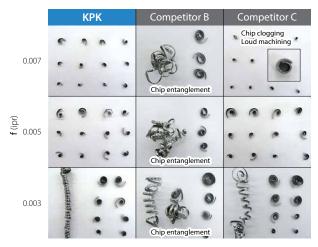
Insert Grades

Steel : PR1625 Stainless Steel : PR1535 Cast Iron and Aluminum : GW15



PH Chipbreaker Tough Edge High-Feed

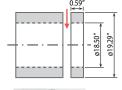
Insert Grades


Steel : PR1625 Stainless Steel : PR1535

Wear Resistance Comparison (Internal Evaluation)

Cutting Conditions : n = 955 RPM (constant), $Vc = \sim 490$ sfm f = 0.005 ipr (~ $\emptyset 0.394$ " : f = 0.002 ipr) Wet (External Coolant) Workpiece: 4131 (ø1.969") Cutting Width: 0.118" (3mm), PM Chipbreaker

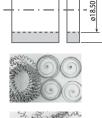
Chip Control Comparison (Internal Evaluation)



Cutting Conditions : n = RPM (constant) , $Vc = \sim 390 \text{ sfm}$, Wet (External Coolant) Workpiece: 4131 (ø1.969") Cutting Width: 0.118" (3mm), PM Chipbreaker

Tool Life x 1.3 **SOLUTION 1** Stable chip curls

(High Carbon Chromium Steel)


External Coolant

KPK

Competitor D


(User Evaluation)

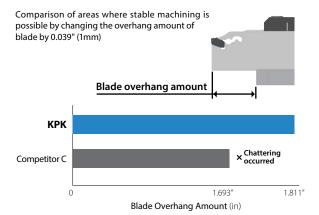
Cutting Conditions : n = 90 RPM (Constant) , $Vc = \sim 460 \text{ sfm}$, f = 0.002 ipr, Wet (External Coolant) KPKB32-3 PKM30N-025PM PR1625

KPK

Adapter (316)**External Coolant**

Competitor E

Cutting Conditions : n = 1,450 RPM (Constant) , $Vc = \sim 570$ sfm , f = 0.002 ipr (Inching: 0.039") Wet (External Coolant) KPKB32-3 PKM30N-025PM PR1535

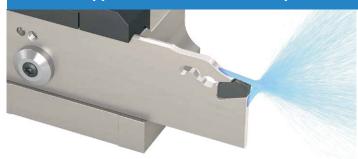

(User Evaluation)

Rigid Tool Holder Block Prevents Chattering and Provides Internal Coolant

Naximum coolant pressure: 1,015 psi

Chatter Resistance Comparison (Internal evaluation)

Cutting Conditions : n = 650 RPM (Constant), Vc = \sim 330 sfm, f = 0.005 ipr Wet (Internal Coolant : Normal Pressure), Workpiece : 4137 (ø1.969") Cutting Width : 0.118" (3mm), PM Chipbreaker

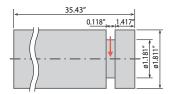

Note

KTKTB type is compatible with internal coolant with an optional internal connector. (~ 145 psi)

*Refer to page 10 for the supply method (Type C).

JCT series supports internal coolant for improved tool life under normal pressure

High-rigidity bottom jaw



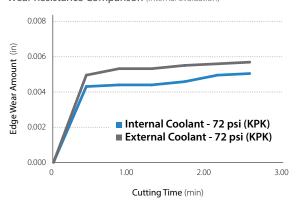
KPKB-JCT maximum overhang length while using internal coolant is as follows: Size 26: 1.575" (40mm) Size 32: 2.323" (59mm)

SOLUTION 3 Doubled tool life
Reduced fracturing

Machine Part (304)

Internal Coolant

KPK 60 pcs/corner (Stable)


Competitor F 30 pcs/corner (Unstable)

Cutting conditions : Vc = 215 sfm (Constant), f = 0.002 ipr, Wet (Internal Coolant 508 psi) KPKB32-3JCT PKM30N-025PM PR1535

(User Evaluation)

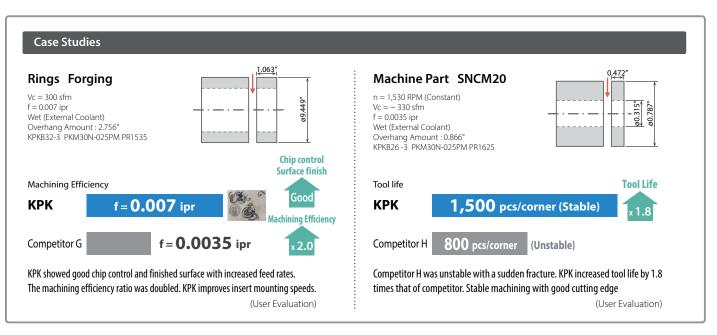
Coolant is supplied directly to the rake and the flank face of the cutting edge for increased tool life and improved chip control

Wear Resistance Comparison (Internal Evaluation)

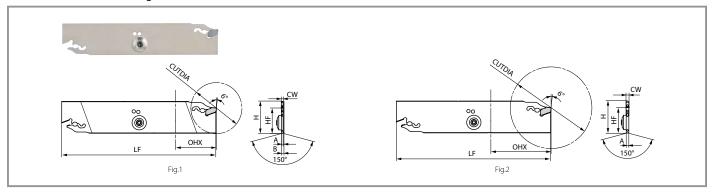
Cutting Conditions : Vc = 100 sfm (Constant), f = 0.004 ipr, Cutting Depth : 0.394", Wet Workpiece : Inconel 718 (ø3.937") Cutting Width : 0.118" (3mm), PM Chipbreaker

Chip Control Comparison (Internal Evaluation)

 $\label{eq:constant} Cutting \ conditions: n = 780 \ RPM \ (Constant), \ Vc = 390 \ sfm, \ f = 0.003 \ ipr, \\ Wet \ Workpiece: 4131 \ (ø1.969") \ Cutting \ Width: 0.118" \ (3mm), \ PM \ Chipbreaker$


Applicable Inserts

		Shape			Di	mensions ((in)	Angle	MI	EGACO	AT NA	NO	Cark	oide
	Riah	t-hand (R) Shown	P	art Number	C	W	RE	PSIR%	DD1	625	DD1	E2E	GW	/15
					in	mm	, NE	PSIK /L	PR1625		PR1535		GW	113
		RE	PKM	20N-020PM	0.079	2.0	0.008		•	•	•	•	•	•
gle		CW±6.03		30N-025PM	0.118	3.0	0.010	_		•		•		•
Without Lead Angle	General Purpose	RE		40N-030PM	0.157	4.0	0.012		•		•		•	
hout L		RE SI	PKM	20N-020PH	OPH 0.079 2.0 0.008		•			-	-			
Wit		CW±003		30N-030PH	0.118	3.0	0.012	_					-	-
	Tough Edge	RE		40N-030PH	0.157	4.0	0.012						-	-
									R	L	R	L	R	L
ngle		PSIM	PKM	20 [™] -020PM-6D	0.079	2.0	0.008		•	•	•	•	•	•
With Lead Angle		CW±003		30 [™] -025PM-6D	0.118	3.0	0.010	6°	•	•	•	•	•	•
With	RE			40 [®] L-030PM-6D	0.157	4.0	0.012		•	•	•	•	•	•
													: Standa	ard Item


Recommended Cutting Conditions ★ 1st Recommendation ☆ 2nd Recommendation

		C	.1		Feed f (ipr)					
		Cutting Speed Vc (sfm	1)	PM	F	PH				
Workpiece	MEGACO	DAT NANO	Carbide	Cutting Width CW (mm)	Cuttin CW	Notes				
	PR1625	PR1535	GW15	2~4	2	3 ~ 4				
Carbon Steel	★ 260 ~ 720	☆ 260 ~ 720	-	0.003 ~ 0.007	0.004 ~ 0.009	0.006 ~ 0.011				
Alloy Steel	★ 230 ~ 660	☆ 230 ~ 660	-	0.003 ~ 0.007	0.004 ~ 0.009	0.000 ~ 0.011				
Stainless Steel	☆ 200 ~ 490	★ 200 ~ 490	-	0.002 ~ 0.005	0.002 ~ 0.005	0.003 ~ 0.006	Wet			
Cast Iron	-	-	★ 160 ~ 330	0.003 ~ 0.007	-	-	wet			
Aluminum Alloy	-	-	★ 660 ~ 1,480	0.003 ~ 0.007	-	-				
Brass	-	-	★ 330 ~ 660	0.003 ~ 0.007	-	-				

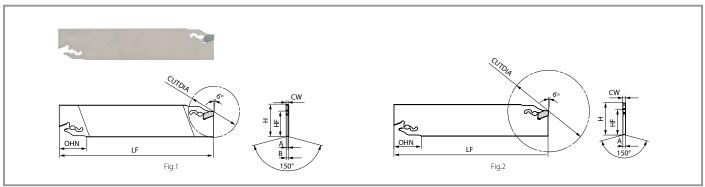
Reduce feed to $1/2 \sim 1/3$ when nearing the center of the workpiece.

KPKB-JCT (Coolant-Through)

Blade Dimensions (Metric Sizes)

Pressure: 1,015 psi

		Cutting			Dimonsi	ons (mm)			Blade Width			Pa									
	~	Dia.			Dillielisi	0115 (111111)			(mm)		Insert Wrench	Coolant Plug	Screw	Wrench	Applicable	Applicable					
Part Number	Stock	CUTDIA	OHX*1	H*2	HF	В	LF	A	CW	Shape					Inserts	Tool Block					
KPKB 26-2JCT	•	50				2.6		1.8	2.0	Fig. 1					PKM20						
26-3JCT	•	75	40	40	40	40	40	40	26	21.4		110	2.6	3.0	F:- 2					PKM30	KPKTB○○-26JCT KTKTB○○-26
26-4JCT	•	80				-		3.4	4.0	Fig. 2	Fig. 2	Fig. 2	Fig. 2	LPW-5	CCP-4	SB-4065TR	FT-15	PKM40	KIKIBOO-20		
KPKB 32-2JCT	•	50				2.6		1.8	2.0	Fig. 1	LPVV-5		olant Plug Scr		PKM20	KPKTB○○-32JCT					
32-3JCT	•	100	59	32	25.0		150	2.6	3.0	F: 2		Tighte	ening Torque 3	3.0 Nm	PKM30	КТКТВ○○-32					
32-4JCT	•	100				-		3.4	4.0	Fig. 2					PKM40	KTKTBF O -32					


See page 9 for insert mounting and removal instructions.

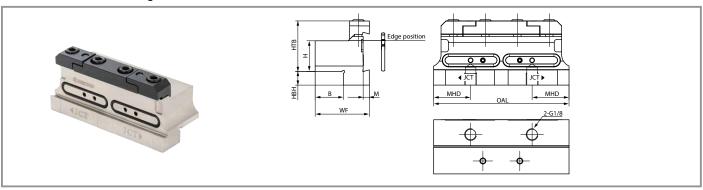
When using internal coolant with KTKTB, KTKTBF type tool holder blocks, coolant supply piping (**CCN -5**) sold separately.

*1 OHX: Maximum overhang length while using internal coolant *2 H: Length between virtual vertices

: Standard Item

KPKB (Not Coolant-Through)

Blade Dimensions (Metric Sizes)


	art Number 50	Cutting Dia.			Dimensio	ons (mm)			Blade Width (mm)		Parts Insert Wrench	Applicable	Applicable
Part Number		CUTDIA	OHN	H*2	HF	В	LF	A	CW	Shape		Inserts	Tool Block
KPKB 26-2	•	50	25					1.8	2.0			PKM20	
26-3	•	75	25	26	21.4	-	110	2.6	3.0	Fig.2		PKM30	KPKTB○○-26JCT KTKTB○○-26
26-4	•	80	24					3.4	4.0			PKM40	KIKIBOO-20
32-2	•	50				2.6		1.8	2.0	Fig.1	LPW-5	PKM20	KPKTB○○-32JCT
32-3	•	100	27	32	25.0		150	2.6	3.0	F: 2		PKM30	KTKTB○○-32
32-4	4	100				-		3.4	4.0	Fig.2		PKM40	KTKTBF○○-32

See page 9 for insert mounting and removal instructions.

: Standard Item

^{*2} H: Length between virtual vertices

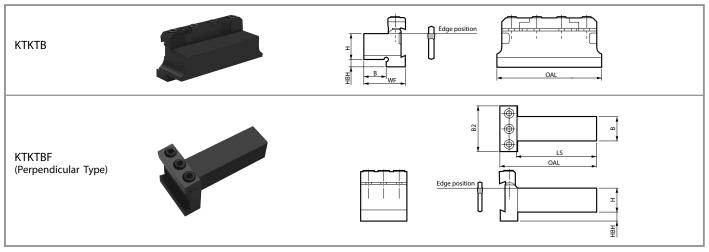
KPKTB-JCT (Coolant-Through)

Tool Block Dimensions (Metric Sizes)

Pressure: 1,015 psi

: Standard Item

	Dimensions (mm)																	
		.,			L	mensio	ווווו) צוונ)			Clamp Set	Screw	Wrench	0-ring	Plug 1	Plug 2		
Part Number		Stock	Н	НТВ	НВН	В	WF	М	MHD	OAL	Switchblade type						Applicable Blade	
КРКТВ	20-26JCT	•	20	33	12.4	19	39	4	23.5	86	BCS-2			GR-020	HS3x4		KPKB26-○JCT KTKB26-○	
	20-32JCT 25-32JCT		20		16		40		25	100	BCS-3	HH6x16	LW-5	GR-026		HSG1/8X8.0		
			25	41	11	23	44	5	30	110	BCS-4			GR-029	HS4x4		KPKB32-○JCT KTKB32-○	
32-32JCT		•	32		5	29	50		30	110	DC3-4			GR-029			KIRD52	


Includes only one **HSG1/8X8.0** plug.

KPKTB-JCT type block is also compatible with conventional KTKB type blades.

See page 11 for coolant piping parts.

When using internal coolant, the coolant may appear to leak slightly, but this should not affect machining performance. (If the O-ring is damaged, order a new one separately.)

KTKTB / KTKTBF (Not Coolant-Through)

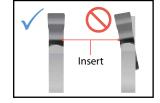
Tool Block Dimensions (Inch & Metric Sizes)

						Dimer	scions							
						Dilliel	1210112			Clan	np Set	Screw	Wrench	
Part	Number	Stock	Unit	Н	НВН	HBH B WF B2 OAL LS		Switchblade type	Integral type			Applicable Blade		
КТКТВ	19-26	•	inch	0.75	0.39	0.720	1.39	3.39		BCS-2		HH6x30	LW-5	KPKB26-○ KPKB26-○JCT
	25.4-32	•	Inch	1.00 0.30		0.905	1.65	4.33	_	BCS-4	_	ннохзо	LW-5	KPKB32-○ KPKB32-○JCT
KTKTB	16-26	•		16	13	15.5	31.5	86 –		BCS-2		HH6x30	LW-5	КРКВ26-○
	20-26	•		20	9	19	36	80	_	BC3-2	_	HHOX30	LVV-3	KPKB26-○JCT
	20-32	•		20	13	19	38	100		BCS-3				WDWDDD O
	25-32	•	mm	25	8	23	42	110	-	BCS-4	-	HH6x30	LW-5	KPKB32-○ KPKB32-○JCT
	32-32	•		32	5	29	48	110		DC3-4				KI KD32-OJCI
KTKTBF	25-32	•		25	9.5	25	48	102	84.5		DCC F	HH6x30	LW-5	КРКВ32-○
	32-32	•		32	2.5	32	48	117	99.5	– BCS-5		ппохзо	LVV-5	KPKB32-○JCT

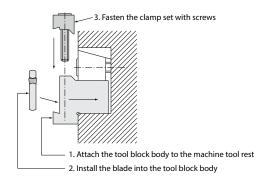
Can be used with internal coolant by utilizing compatible coolant piping (CCN-5).

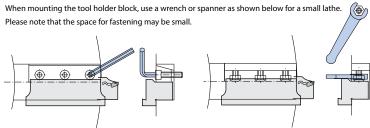
How to Mount and Remove Inserts from Blade

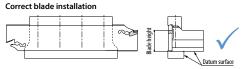

- 1. Insert provided wrench and turn upwards as shown in (Fig. 1)
- 2. Slide insert into the blade's insert pocket from the front and push in until the back of the insert contacts the blade's back stop surface. (Fig. 2)

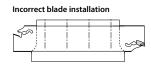

Completely eliminate chips from the insert pocket and the wrench insertion area by using compressed air.

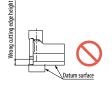
Check to make sure the insert is straight and not tilted.


When removing the insert, follow the same procedure as shown in Fig. 2



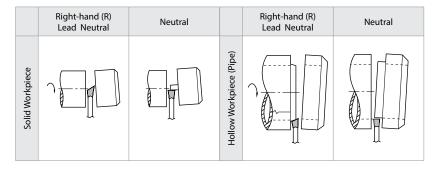



Tool Block and Blade Installation Guide



How to Install the Tool Block and Blade

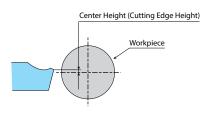
Incorrect Clamp Set Orientation

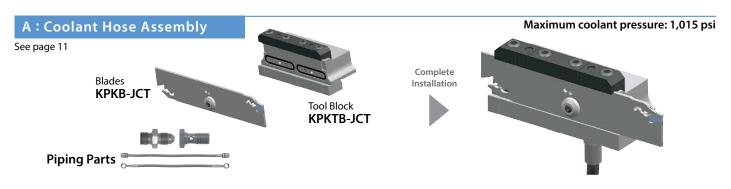


If the clamp set is mounted in the reverse direction, a large gap is created between the tool holder block main body and the clamp set as shown in the left figure. If you continue to use the product, the blade may break off. Reinstall in the correct orientation.

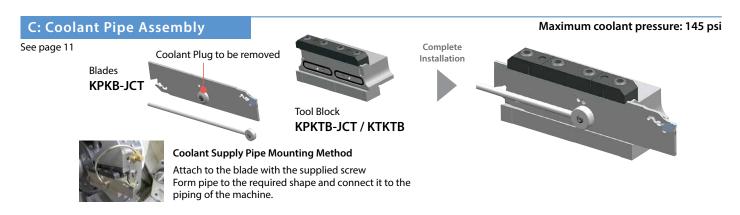
Lead Angle Direction and Usage

- 1. If there is no restriction on the finished shape, use an insert without lead angle.
- 2. Insert with lead angle is recommended to prevent remaining boss.
- 3. If you want to make the remaining boss smaller when machining small or thin parts, use insert with lead angle.


gle	N (Neutral)	R (Right-hand)	L (Left-hand)						
Handed insert with lead angle		PSIRR	PSIRL						
Hande	· Inserts with lead angle (PSIR ⁸ /L) reduce burrs in cut-off machining. ·The larger the lead angle (PSIR ⁸ /L), the smaller the cutting force. The feed also needs to be lower.								

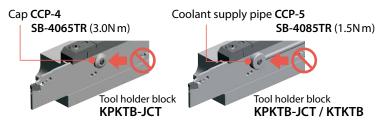


Machining Precautions


- 1. Set cutting edge height 0.004" (0.1mm) above core height.
- 2. Machining with ample supply of coolant is recommended
- 3. Machine at constant speeds to gain stable tool life
- 4. Make the cut-off as close as possible to the chuck
- 5. To prevent impacts, reduce feed rate by $1/2 \sim 1/3$ when nearing the center of the workpiece

Excessive use of the insert may cause chipping or damage to the holder

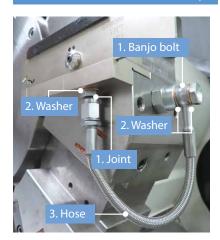
Precautions


When mounting KPKB-JCT blade

When using internal coolant, keep the arrow (\P) on the blade within the range marked on the tool holder block.

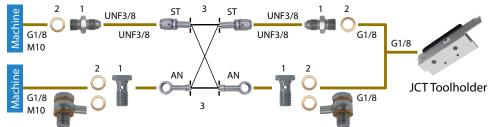
When the cap and coolant supply pipe are mounted

Coolant cannot be supplied correctly if it is mounted in the wrong position.

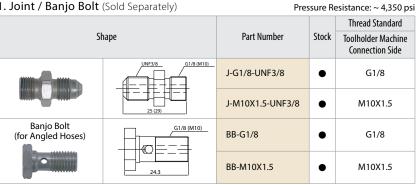

When using a tool block

When using the discharge port B1 (B2), use a sealant for the filler cap (HSG 1/8 X 8.0) of the accessory part of the coolant supply port A1 (A2).

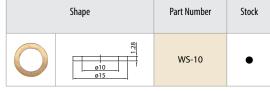
A: Coolant Hose Assembly


Connection Method and Piping Parts

Easy to use with high-pressure hose and joint

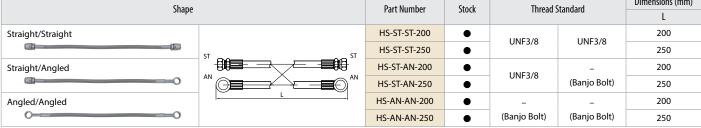

Can be used for internal coolant at normal pressure without a high pressure pump unit Banjo bolts (for angled hoses) are also available.

<Piping Installation Guide>



Depending on machine specifications and piping methods, 1.Joint/Banjo bolt x2 2.Washer x2-4 3.Hose x1

1. Joint / Banjo Bolt (Sold Separately)



*If you are using a banjo bolt, two : Standard Item washers are needed.

3. ł

. Hose (Sold Separately)			Pressure Re	sistance: ~ 4,350 psi	
Chana	Part Number	Stock	Thread Standard	Dimensions (mm)	
Shape	rait Nullibei	Stock	illiedu Stalludiu		

: Standard Item

Precautions

- 1. Make sure machine door is completely closed before use of these parts.
- 2. Use appropriate seal for the male thread of the piping parts and make sure the connection is secure. Use plugs to seal off unused coolant holes.
- 3. Connect and fasten the coolant hose firmly.
- 4. The use of copper washers may cause leakage but will have no effect on the performance.
- 5. Commercial piping parts can be used if the thread standards are same. Check the pressure resistance before use.
- 6. Regularly changing the coolant filter is recommended.

C: Coolant Pipe Assembly

Piping Parts

Coolant Supply Pipe (Sold Separately)

Coolant Supply Fipe (Sold Separately)	лан заррту т ре (зона зерагасету)										
					Dimensio	ons (mm)		Spare Parts (Screw)			
Shap	Part Number	Stock	A	В	С	D					
©	A	CCN-5	•	190	16	5	6	SB-4085TR			

Use wrench (FT-15) supplied with the blade when connecting.

: Standard Item

: Standard Item

KYOCERA Precision Tools

102 Industrial Park Road Hendersonville, NC 28792 Customer Service | 800.823.7284 - Option 1 Technical Support | 800.823.7284 - Option 2

