

TOOLING & MACHINERY

www.ahbinc.com

customerservice@ahbinc.com

MECHT **COMPLETE METALWORKING SOLUTIONS** (800) 991-4225 **ISO Certified** Helical End Mill for Titanium Alloy Machining

New Helical End Mill Design Added to the MECH Product Line

Unique Design for Stable Titanium Alloy Milling Insert combination for increased stability Special holder design for increased reliability **Coolant holes for Excellent chip evacuation**

Longer Tool Life with Low-resistance JS Chipbreaker and Tough PVD Coating Technology

MECHT

Helical End Mill for Titanium Alloy Machining

Insert Size Combination Improves Roughing Capabilities Improved Coolant Hole Maintains Stable Machining and Long Tool Life

1

Developed to Reduce Chattering and Chip Recutting Issues

Unique Insert Combination

Larger bottom inserts are positioned to handle larger cutting forces (excluding ø32mm) Increased fracture resistance for stable machining

I I T3 type I I T3 type I T type (MECHT50R-1711 type)

New Design for Higher Reliability

Bottom inserts are held in place by double-faced contacts

Holding Surface 2

Additional Hold in the Axial Direction

Bore Dia.

Larger bore diameter improves fastening power and reduces chattering ø50mm Cutter with a ø27mm Bore (Conventional Bore : ø22mm)

Toolholder Hardness Hardened 15% more than conventional holders

Toolholder Spec

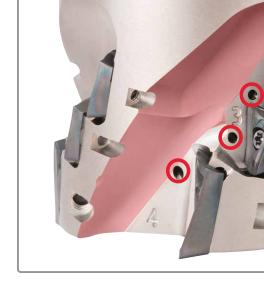
Custom ordering available (Custom number of inserts and stages)

New flute design

Large, smooth flutes prevent chip clogging

MECHT (ø50mm-4T 3 Stages)

Conventional (ø50mm-4T 4 Stages)


Smooth design

All inserts have coolant holes

Optimized hole diameter controls flow amount and pressure

Smooth chip evacuation as well as superior cooling of the cutting edge

Low Cutting Force

extending tool life

Heat at the cutting edge is suppressed

due to sharp cutting performance

Longer Tool Life with Low-resistance JS Chipbreaker and Tough PVD Coating

Fracture resistant with a tough

substrate and high heat-resistant

MEGACOAT NANO coating technology

PR1535

Greater Toughness

Tool Life Comparison (Internal Evaluation) MECHT showed good cutting edge condition with 50% longer tool life than competitor B. **Tool Life** MECHT MECHT **Further Machining Possible** x1.5 Good Competitor A Competitor A 0 50 100 150 Cutting time (min)

Cutting Conditions : Vc = 130 sfm, D.O.C. × ae = 1.692" × 0.787", fz = 0.0047 ipt, ø50mm (5 Flutes), Wet (External and internal coolant) Workpiece : Ti-6Al-4V Machine : T50

Slotting Titanium Alloy (Internal Evaluation)

D.O.C. = 0.787" (0.4 x DC)

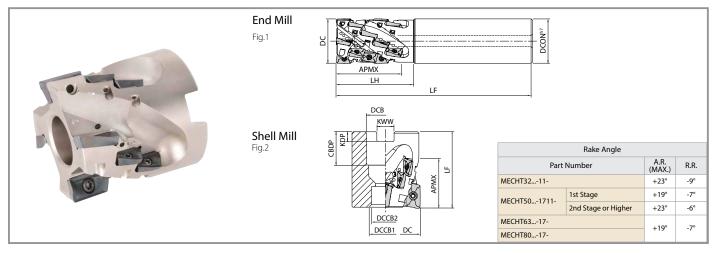
Stable Machining without Chip Clogging or Chattering

JS Chipbreaker

Cutting Conditions : Vc = 130 sfm, D.O.C. × ae = 0.787" × 1.97" (Slotting), fz = 0.003 ipt ø50mm (5 Flutes), Wet (External and internal coolant) Workpiece : Ti-6Al-4V Machine : BT50

Case Study Aerospace Part Ti-6Al-4V Vc = 180 sfm (n = 350 rpm) D.O.C. \times ae = 0.94" \times 0.63" fz = 0.004 ipt (Vf = 4.96 ipm) Wet (Internal coolant) MECHT50R-1711-3-4T-M BDMT170408ER-JS PR1535 (first stage) BDMT11T308ER-JS PR1535 (second and third stage) Cutting Efficiency **Cutting Efficiency** Vf = 4.96 ipm MECHT Vf = 3.30 ipm Competitor B MECHT showed good chip evacuation and stable machining even with increasing feed rate. Machining efficiency was 50% better that of the competitor with equivalent tool life.

Recommended Cutting Conditions


Workpiece		Dautha	f (t (i)		Recommended Insert Grade (Vc : sfm)			
	Applications	Depth o	f Cut (in)	fz (ipt)	MEGACOAT NANO			
		D.O.C.	ae		PR1535			
Titanium Alloy	Shouldering	~Length of Cut (APMX)	~0.5 DC	0.004 ~ 0.005 ~ 0.006	100 ~ 130 ~ 200			
(Ti-6Al-4V)	Slotting	~0.5 DC	1 DC	0.002 ~ 0.003 ~ 0.004	100 ~ 130 ~ 160			

Cutting Edge after Machining 50 min

(User evaluation)

MECHT

End Mill Dimensions

			S	ş	S							Spare	Parts	Applicable Inserts	
Part Number	Stock	Flutes	No. of Stages	Inserts		Dime	ensions ((mm)		wing	Clamp Screw	Wrench		2nd Stage or Higher	
	St	No. of		No. of	DC	DCON	LF	LH	APMX	Dra		<u>A</u>	1st Stage		
MECH	HT 32-S32-11-5-4T	•	4	5	20	32	32	140	55	46	Fig.1	SB-2555TRG	DTM-8	BDMT11T3**	*1BDMT11T308**

Shell Mill Dimensions

			tes	ges	rts											S	oare Parts		Applicable Inserts	
Part Number		Stock	문	Sta	Inse		Dimensions (mm)								wing	Clamp Screw	Wrench	Arbor Bolt		Den al Channa an
	No. of		No.of	No. of	DC	DCB	DCCB ₁	DCCB ₂	LF	CBDP	KDP	ĸww	APMX	Dra		<u>A</u>		1st Stage	2nd Stage or Higher	
MECHT	50R-1711-3-4T-M	٠	4	3	12	50	27		14 55 65	55	24 7	-	12.4	34	5 :- 2	SB-2555TRG	DTM-8	HH12X40	BDMT1704**	*1 BDMT11T308**
	50R-1711-4-5T-M	٠	5	4	20	50	27	20		65		/		43		SB-4070TRN	DTM-15	HH12X50		
MECHT	63R-17-4-5T-M	٠	5	4	20	63	27	20	14	80	24	7	12.4	60	Fig.2		DTM 15	HH12X65	DDIVIT1704***	*1 PDMT170409**
	80R-17-4-6T-M	•	6	4	24	80	32	26	17		28	8	14.4	00		SB-4070TRN		HH16X65	1	*1BDMT170408**

*1. Use inserts with Corner R of 0.8 or less for the 2nd or higher stages

Machining with coolant is recommended (Internal coolant pressure 1.5 MPa or higher)

Coat anti-seize compound (P-37) thinly on the taper and the thread of the clamp screw when mounting inserts.

Applicable Inserts

Ins	sert	Part Number		D ir	nensions (r	nm)	An	gle	MEGACOAT NANO	
Right-Ha	nd Shown	raitinumber	W1	S	D1	L	RE	AS	AN	PR1535
	(A)	BDMT 11T302ER-JS					0.2			•
		11T304ER-JS	6.7	3.8	2.8	11.0	0.4	18°	13°	•
	(10°)	11T308ER-JS					0.8			•
		BDMT 170404ER-JS	9.6	4.9	4.4	17.0	0.4	18°	13°	•
Low Cutting Force	AN	170408ER-JS					0.8			•

General JT chipbreaker and notched insert (only if holder has an even number of inserts) can also be used. For more information, please contact your Kyocera sales representative.

• : Standard Stock

• : Standard Stock

KYOCERA Precision Tools

102 Industrial Park Road Hendersonville, NC 28792 Customer Service | 800.823.7284 - Option 1 Technical Support | 800.823.7284 - Option 2

Official Website | www.kyoceraprecisiontools.com Distributor Website | mykpti.kyocera.com Email | ctsales@kyocerapti.com