

C010A

CUTTING TOOLS 2024

TOOLING & MACHINERY

COMPLETE METALWORKING SOLUTIONS(800) 991-4225www.ahbinc.comISO Certifiedcustomerservice@ahbinc.com

TECHNICAL DATA

ISO13399 COMPLIANCE N002
TROUBLE SHOOTING FOR TURNING
CHIP CONTROL FOR TURNING ···································
EFFECTS OF CUTTING CONDITIONS FOR TURNING N009
FUNCTION OF TOOL FEATURES FOR TURNING N011
FORMULAS FOR TURNING ······N015
TROUBLE SHOOTING FOR THREADING ····································
THREADING METHODS ····································
TROUBLE SHOOTING FOR FACE MILLING
FUNCTION OF TOOL FEATURES FOR FACE MILLING
FORMULAS FOR FACE MILLING ·······N024
TROUBLE SHOOTING FOR END MILLING
END MILL FEATURES AND SPECIFICATION ····································
END MILL TYPE AND GEOMETRYN027
PITCH SELECTION OF PICK FEED
TROUBLE SHOOTING FOR DRILLING
DRILL WEAR CONDITION AND CUTTING EDGE DAMAGE
DRILL TERMINOLOGY AND CUTTING CHARACTERISTICSN031
FORMULAS FOR DRILLING N034
TOOL WEAR AND DAMAGE
MATERIAL CROSS REFERENCE LISTN036
SURFACE ROUGHNESS ···································
HARDNESS COMPARISON TABLE
CUTTING TOOL MATERIALS
GRADE CHAIN
GRADE COMPARISON TABLE
INSERT CHIP BREAKER COMPARISON TABLE

LIST OF PROPERTY SYMBOLS COMPLYING WITH ISO13399

Alphabetical

Source: ISO13399 standard URL : https://www.iso.org/search/x/query/13399

ISO13399 Property Symbols	Content
ADJLX	Adjustment limit maximum
ADJRG	Adjustment range
ALF	Clearance angle radial
ALP	Clearance angle axial
AN	Clearance angle major
ANN	Clearance angle minor
APMX	Depth of cut maximum
AS	Clearance angle wiper edge
ASP	Adjusting screw protrusion
AZ	Plunge depth maximum
В	Shank width
BBD	Balanced by design
BCH	Corner chamfer length
BD	Body diameter
BDX	Body diameter maximum
BHCC	Bolt hole circle count
BHTA	Body half taper angle
BMC	Body material code
BS	Wiper edge length
BSR	Wiper edge radius
CASC	Cartridge size code
СВ	Chip breaker face count
CBDP	Connection bore depth
CBMD	Chip breaker manufacturers designation
CBP	Chip breaker property
CCMS	Connection code machine side
CCWS	Connection code workpiece side
CCP	Chamfer corner property
CDI	Insert cutting diameter
CDX	Cutting depth maximum
CEATC	Tool cutting edge angle type code
CECC	Cutting edge condition code
CEDC	Cutting edge count
CF	Spot chamfer Corner chamfer width
CHW CICT	
CNC	Cutting item count
CND	Corner count Coolant entry diameter
CNSC	Coolant entry style code
CNT	Coolant entry thread size
CP	Coolant entry thread size
CRE	Spot radius
CRKS	Connection retention knob thread size
CSP	Coolant supply property
СТР	Coating property
CTX	Cutting point translation X-direction
CTY	Cutting point translation X-direction
CUTDIA	Work piece parting diameter maximum
CUB	Connection unit basis
CW	Cutting width

ISO13399 operty Symbols	Content
CWX	Cutting width maximum
CXD	Coolant exit diameter
CXSC	Coolant exit style code
CZC	Connection size code
D1	Fixing hole diameter
DAH	Diameter access hole
DAXN	Axial groove outside diameter minimum
DAXX	Axial groove outside diameter maximum
DBC	Diameter bolt circle
DC	Cutting diameter
DCB	Connection bore diameter
DCBN	Connection bore diameter minimum
DCBX	Connection bore diameter maximum
DCC	Design configuration style code
DCCB	Counterbore diameter connection bore
DCIN	Cutting diameter internal
DCINN	Cutting diameter internal minimum
DCINX	Cutting diameter internal maximum
DCN	Cutting diameter minimum
DCON	Connection diameter
DCONMS	Connection diameter machine side
DCONWS	Connection diameter workpiece side
DCSC	Cutting diameter size code
DCSFMS	Contact surface diameter machine side
DCX	Cutting diameter maximum
DF	Flange diameter
DHUB	Hub diameter
DMIN	Minimum bore diameter
DMM	Shank diameter
DN	Neck diameter
DRVA	Drive angle
EPSR	Insert included angle
FHA	Flute helix angle
FHCSA	Fixing hole countersunk angle
FHCSD	Fixing hole countersunk diameter
FLGT	Flange thickness
FMT	Form type
FXHLP	Fixing hole property
GAMF	Rake angle radial
GAMN	Rake angle normal
GAMO	Rake angle orthogonal
GAMP	Rake angle axial
GAN	Insert rake angle
н	Shank height
HA	Thread height theoretical
HAND	Hand
НВН	Head bottom offset height
HBKL	Head back offset length
HBKW	Head back offset width
HBL	Head bottom offset length
НС	Thread height actual
HF	Functional height
HHUB	Hub height
НТВ	Body height
IC	Inscribed circle diameter
IFS	Insert mounting style code

LIST OF PROPERTY SYMBOLS COMPLYING WITH ISO13399

ISO13399 Property Symbols	Content
IIC	Insert interface code
INSL	Insert length
KAPR	Tool cutting edge angle
КСН	Corner chamfer angle
KRINS	Cutting edge angle major
KWL	Keyway length
KWW	Keyway width
КҮР	Keyway property
L	Cutting edge length
LAMS	Inclination angle
LB	Body length
LBB	Chip breaker width
LBX	Body length maximum
LCCB	Counterbore depth connection bore
LCF	Length chip flute
LDRED	Reduced body diameter length
LE	Cutting edge effective length
LF	Functional length
LFA	A dimension on If
LH	Head length
LPR	Protruding length
LS	Shank length
LSC	Clamping length
LSCN	Clamping length minimum
LSCX	Clamping length maximum
LTA	LTA length (length from MCS to CRP)
LU	Usable length
LUX	Usable length maximum
М	M-dimension
M2	Distance between the nominal inscribed circle and the corner of an insert that has the secondary included angle
МНА	Mounting hole angle
MHD	Mounting hole distance
МНН	Mounting hole height
MIID	Master insert identification
МТР	Clamping type code
NCE	Cutting end count
NOF	Flute count
NOI	Insert index count
NT	Tooth count
OAH	Overall height
OAL	Overall length
OAW	Overall width
PDPT	Profile depth insert
PDX	Profile distance ex
PDY	Profile distance ey
PFS	Profile style code
PL	Point length
PNA	Profile included angle
PSIR	Tool lead angle
PSIRL	Cutting edge angle major left hand
PSIRR	Cutting edge angle major right hand
RAL	Relief angle left hand
RAR	Relief angle right hand
RCP	Rounded corner property
RE	Corner radius
REL	Corner radius left hand
	Corner radius left hand

ISO13399 Property Symbols	Content
RER	Corner radius right hand
RMPX	Ramping angle maximum
RPMX	Rotational speed maximum
S	Insert thickness
S1	Insert thickness total
SC	Insert shape code
SDL	Step diameter length
SIG	Point angle
SSC	Insert seat size code
SX	Shank cross section shape code
TC	Tolerance class insert
TCE	Tipped cutting edge code
TCTR	Thread tolerance class
TD	Thread diameter
THFT	Thread form type
THL	Threading length
THLGTH	Thread length
THSC	Tool holder shape code
THUB	Hub thickness
ТР	Thread pitch
ΤΡΙ	Threads per inch
TPIN	Threads per inch minimum
ΤΡΙΧ	Threads per inch maximum
TPN	Thread pitch minimum
ТРТ	Thread profile type
ТРХ	Thread pitch maximum
TQ	Torque
TSYC	Tool style code
ТТР	Thread type
ULDR	Usable length diameter ratio
UST	Unit system
W1	Insert width
WEP	Wiper edge property
WF	Functional width
WF2	Distance between the cutting reference point and the front seating surface of a turning tool
WFS	Functional width secondary
WT	Weight of item
ZEFF	Face effective cutting edge count
ZEFP	Peripheral effective cutting edge count
ZNC	Cutting edge center count
ZNF	Face mounted insert count
ZNP	Peripheral mounted insert count

LIST OF REFERENCE SYMBOLS COMPLYING WITH ISO13399

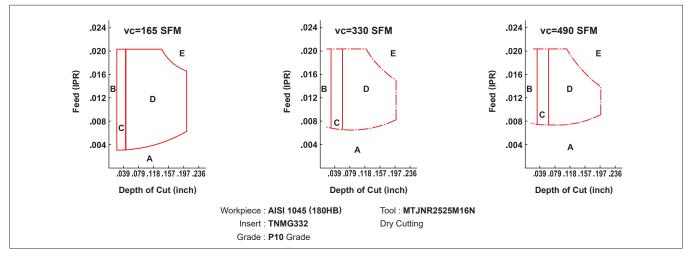
R	ISO13399 eference Symbols	Content
	CIP	Coordinate system in process
	CRP	Cutting reference point
	CSW	Coordinate system workpiece side
	MCS	Mounting coordinate system
_	PCS	Primary coordinate system

TECHNICAL DATA

TROUBLE SHOOTING FOR TURNING

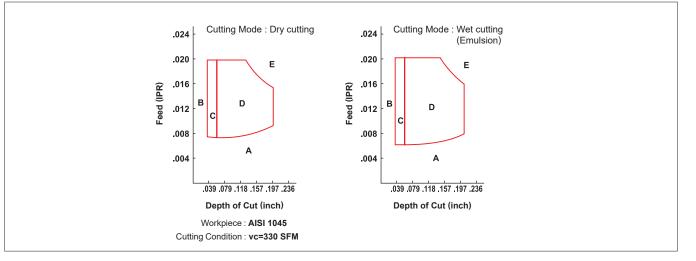
	Solutions		In	sert Sele	Gra ctio	de n		C Coi	uttir nditi	ng ons			Sty	/le a of t	and he 1					chine a ation o	and of Tool
			Select a Harder Grade	Select a Tougher Grade	Select a Grade with Better Thermal Shock Resistance	Select a Grade with Better Adhesion Resistance	Cutting Speed	Feed Rate	Depth of Cut	Flu	ting iids	p Breaker	Rake Angle	Corner Radius	Lead Angle	Honing Strengthens the Cutting Edge	sert -Ground)	Improve Tool Holder Rigidity	Installation of the Tool and Workpiece	Toolholder Overhang	Machine with Inadequate Horsepower and Rigidity
Тг	rouble	ctors	Select a Ha	Select a To	Select a Grac Thermal Sho	Select a Gra Adhesion Re		Up own	*	Do Not Use Water- soluble Cutting Fluid	Determine Dry or Wet Cutting	Select Chip Breaker		Up Dow) ≯ /n ∖		Class of Insert (Unground-Ground)	Improve Tool	Installation o Workpiece	Toolholder	Machine wit Horsepowe
		Improper tool grade	•																		
	Rapid insert wear	Improper cutting edge geometry										•	*	*	*	•					
		Improper cutting conditions					• >	*			• Wet										
Life		Improper tool grade		•																	
Short Tool Life		Improper cutting conditions						•													
Sho	Chipping and fracturing of cutting edge	Lack of cutting edge strength										•		×		*					
		Thermal cracking			•		•	•	•	•	• Dry										
		Built-up edge				•	*	*		•	• Wet										
		Lack of rigidity																•	•	•	•
-ue	Dimensional unevenness	Improper insert tolerance															•				
g Dimen- ccuracy	during machining	Large cutting resistance and cutting edge flank										•	•	•	•	•		•	•	•	•
Worsening sional Acc	Machining accuracy not maintained	Improper tool grade	•																		
vo si	adjustment is necessary each time	Improper cutting conditions					•	~													
ace		Welding occurs					*			•	Wet										
Poor Surface Finish	Worsening surface roughness	Improper cutting edge geometry										•		×.							
Poo	roughiess	Vibration occurs					•	•	•									•	•	•	•
at ation	Cutting heat creates deterioration in	Improper cutting conditions					•	٩	•												
Heat Generation	machining accuracy and tool life	Improper cutting edge geometry										•	*			•					

		Solutions	In	sert Sele	Gra ctio	de n		C Coi	uttir nditi	ng ons			St	yle a of t	and he 1	Desi Fool				chine lation	and of Tool
Trouble Factors			Select a Harder Grade	Select a Tougher Grade	Select a Grade with Better Thermal Shock Resistance	Select a Grade with Better Adhesion Resistance	Cutting Speed	dn beed Rate	🖌 🔌 Depth of Cut	Do Not Use Water- soluble Cutting Fluid	Determine Dry or spint Wet Cutting	Select Chip Breaker	Rake Angle	AOD AD	Lead Angle		Class of Insert (Unground-Ground)	Improve Tool Holder Rigidity	Installation of the Tool and Workpiece	Toolholder Overhang	Machine with Inadequate Horsepower and Rigidity
	Burr	Notch wear occurs	•					7													
	(Steel, Aluminum alloy)	Improper cutting conditions					•	é			Wet										
s		Improper cutting edge geometry										•	*	•	•	•					
ighnes		Improper cutting conditions																			
Burr / Chipping / Roughness	Chipping (Cast iron)	Improper cutting edge geometry										•	*	*	*	•					
hippin		Vibration occurs																•	•	•	•
urr / C		Improper tool grade				•															
Β	Roughness	Improper cutting conditions					*			•	• Wet										
	(Mild steel)	Improper cutting edge geometry										•	*			•					
		Vibration occurs																•	•	•	•
		Improper cutting conditions					•	*	*		Wet										
	Uncontrolled, continuous / tangled	Wide chip control range										•									
Chip Control		Improper cutting edge geometry												•	۰						
Chip C		Improper cutting conditions						•	•		• Dry										
	Broken into short lengths and scatter	Small chip control range										•									
		Improper cutting edge geometry												*	*						


CHIP CONTROL FOR TURNING

CHIP BREAKING CONDITIONS IN STEEL TURNING

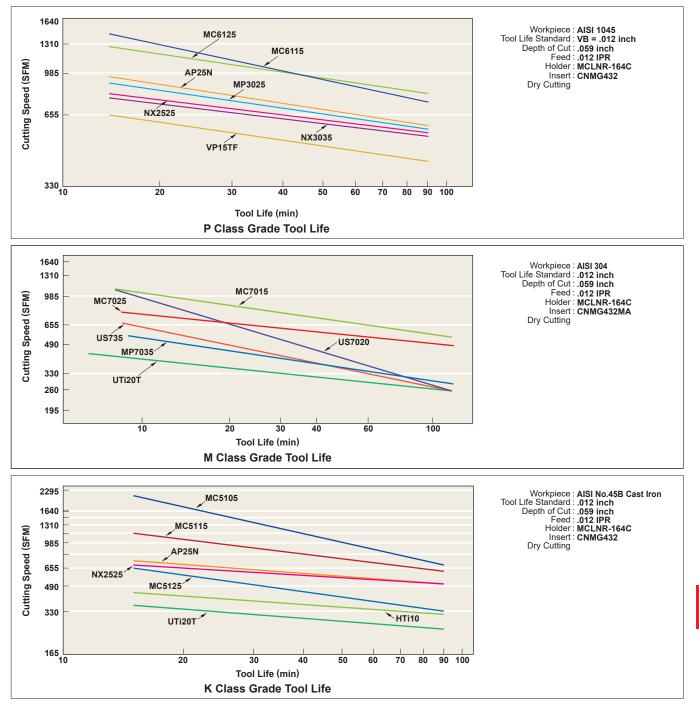
Туре	А Туре	В Туре	С Туре	D Туре	Е Туре
Small Depth of Cut d <.276"	State State	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AND	3-07	ic in
Large Depth of Cut d=.276"591"					
Curl Length I	No Curl	l≥2 inch	l≤2 inch 1−5 Curl	≒ 1 Curl	1 curl—half curl
Note	 Irregular con- tinuous shape Tangle about tool and workpiece 	 Regular con- tinuous shape Long chips 	Good	Good	 Chip scattering Chattering Poor finished surface Maximum


Cutting Speed and Chip Control Range of Chip Breaker

In general, when cutting speed increases, the chip control range tends to become narrower.

• Effects of Coolant on the Chip Control Range of a Chip Breaker

If the cutting speed is the same, the range of chip control differs according to whether coolant is used or not.


EFFECTS OF CUTTING CONDITIONS FOR TURNING

EFFECTS OF CUTTING CONDITIONS

Ideal conditions for cutting are short cutting time, long tool life, and high cutting accuracy. In order to obtain these conditions, selection of efficient cutting conditions and tool, based on workpiece, hardness, shape and machine capability is necessary.

CUTTING SPEED

Cutting speed effects tool life greatly. Increasing cutting speed increases cutting temperature and results in shortening tool life. Cutting speed varies depending on the type and hardness of the workpiece. Selecting a tool grade suitable for the cutting speed is necessary.

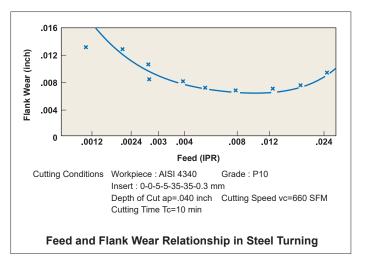
Effects of Cutting Speed

1. Increasing cutting speed by 20% decreases tool life to 1/2. Increasing cutting speed by 50% decreases tool life to 1/5.

2. Cutting at low cutting speed (65—130 SFM) tends to cause chattering. Thus, tool life is shortened.

TECHNICAL DATA

TECHNICAL DATA

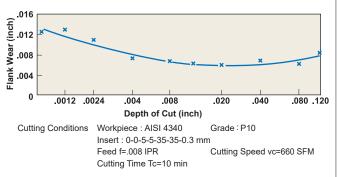

EFFECTS OF CUTTING CONDITIONS FOR TURNING

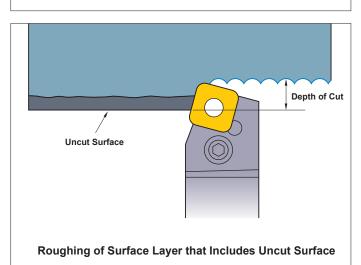
FEED

When cutting with a general type holder, feed is the distance a holder moves per workpiece revolution. When milling, feed is the distance a machine table moves per cutter revolution divided by the number of inserts. Thus, it is indicated as feed per tooth. Feed rate relates to finished surface roughness.

Effects of Feed

- Decreasing feed rate results in flank wear and shortens tool life.
- Increasing feed rate increases cutting temperature and flank wear. However, effects on the tool life is minimal compared to cutting speed.
- 3. Increasing feed rate improves machining efficiency.

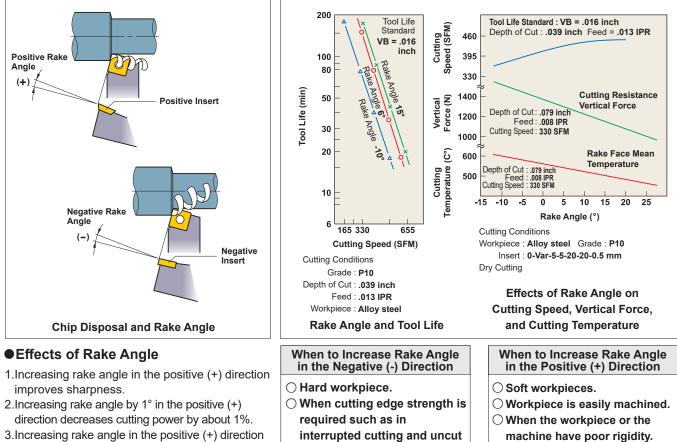



DEPTH OF CUT

Depth of cut is determined according to the required stock removal, shape of workpiece, power and rigidity of the machine and tool rigidity.

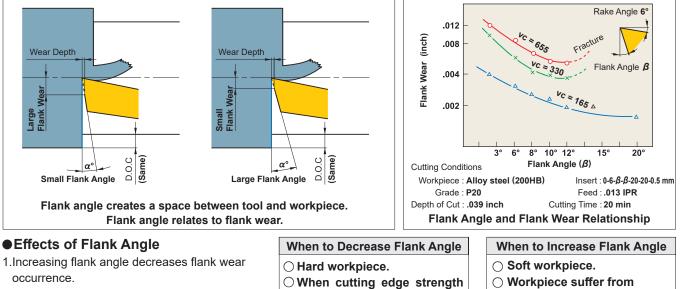
• Effects of Depth of Cut

- 1. Changing depth of cut doesn't effect tool life greatly.
- Small depths of cut result in friction when cutting the hardened layer of a workpiece. Thus tool life is shortened.
- 3. When cutting uncut surfaces or cast iron surfaces, the depth of cut needs to be increased as much as the machine power allows in order to avoid cutting impure hard layers with the tip of cutting edge to prevent chipping and abnormal wear.



FUNCTION OF TOOL FEATURES FOR TURNING

RAKE ANGLE


Rake angle is a cutting edge angle that has large effects on cutting resistance, chip disposal, cutting temperature and tool life.

3. Increasing rake angle in the positive (+) direction lowers cutting edge strength and in the negative (-) direction increases cutting resistance.

FLANK ANGLE

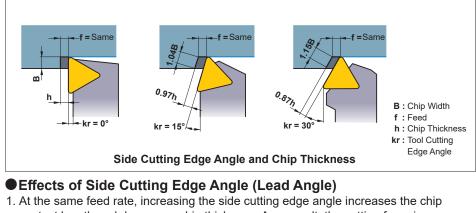
Flank angle prevents friction between flank face and workpiece resulting in smooth feed.

is required.

surface cutting.

2.Increasing flank angle lowers cutting edge strength.

- Workpiece suffer from
- work hardening easily.


N011

TECHNICAL DATA

FUNCTION OF TOOL FEATURES FOR TURNING

SIDE CUTTING EDGE ANGLE (LEAD ANGLE)

Side cutting edge angle lower impact load and effect feed force, back force, and chip thickness.

- At the same feed rate, increasing the side cutting edge angle increases the chip contact length and decreases chip thickness. As a result, the cutting force is dispersed on a longer cutting edge and tool life is prolonged. (Refer to the chart.)
- Increasing the side cutting edge angle increases force a'. Thus, thin, long workpiece suffer from bending in some cases.
- 3. Increasing the side cutting edge angle decreases chip control.
- 4. Increasing the side cutting edge angle decreases the chip thickness and increases chip width. Thus, breaking chips is difficult.

When to Decrease Lead Angle

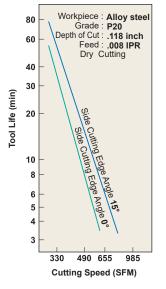
- Finishing with small depth of cut.
- \bigcirc Thin, long workpiece.
- When the machine has poor rigidity.

When to Increase Lead Angle

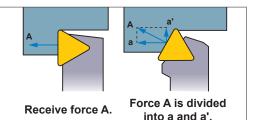
- O Hard workpiece which produce high cutting temperature.
- ○When roughing a large
- diameter workpiece.
- When the machine has high rigidity.

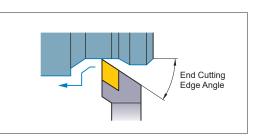
The end cutting edge angle avoids interference between the machined surface and the tool (end cutting edge). Usually 5° - 15° .

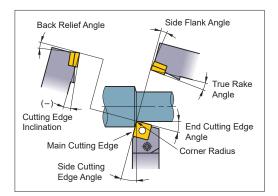
• Effects of End Cutting Edge Angle


- 1. Decreasing the end cutting edge angle increases cutting edge strength, but it also increases cutting edge temperature.
- 2. Decreasing the end cutting edge angle increases the back force and can result in chattering and vibration while machining.
- Small end cutting edge angle in roughing and large angle in finishing are recommended.

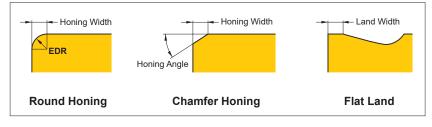
CUTTING EDGE INCLINATION

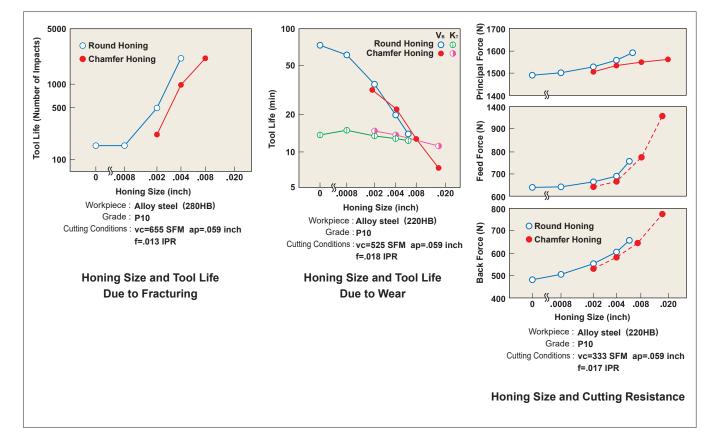

Cutting edge inclination indicates inclination of the rake face. In heavy cutting, the cutting edge receives extremely large shock at the beginning of cutting. Cutting edge inclination keeps the cutting edge from receiving this shock and prevents fracturing. $3^{\circ}-5^{\circ}$ in turning and $10^{\circ}-15^{\circ}$ in milling are recommended.


• Effects of Cutting Edge Inclination


- 1. Negative (-) cutting edge inclination disposes chips in the workpiece direction, and positive (+) disposes chips in the opposite direction.
- Negative (-) cutting edge inclination increases cutting edge strength, but it also increases back force of cutting resistance. Thus, chattering easily occurs.

Side Cutting Edge and Tool Life





HONING AND LAND

Honing and land are cutting edge shapes that maintain cutting edge strength. Honing can be round or chamfer type. The optimal honing or / and land width is approximately 1/2 of the feed. Land is the narrow flat area on the rake or flank face.

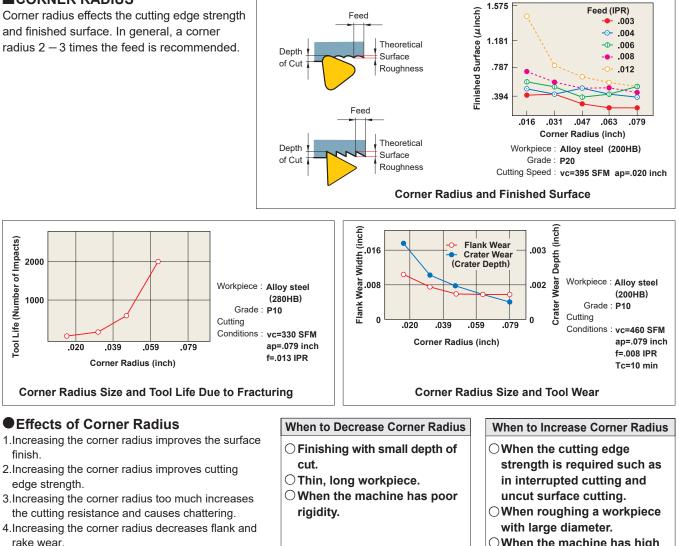
Effects of Honing

- 1. Enlarging the honing increases cutting edge strength, and reduces fracturing.
- 2. Enlarging the honing increases flank wear occurrence. Honing size doesn't affect rake wear.
- 3.Enlarging the honing increases cutting resistance and chattering.

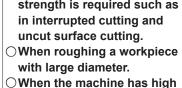
When to Decrease Honing Size

- When finishing with small depth of cut and small feed.
 Soft workpiece.
- O When the workpiece and the machine have poor rigidity.
- Hard workpiece.
 When the cutting edge strength is required such as

When to Increase Honing Size


for uncut surface cutting and interrupted cutting. O When the machine has high rigidity.

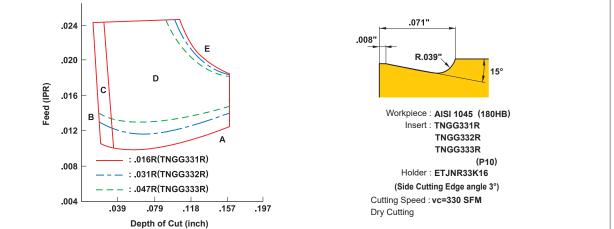
*Cemented carbide, coated diamond, and indexable cermet inserts have round honing as standard.


FUNCTION OF TOOL FEATURES FOR TURNING

CORNER RADIUS

Corner radius effects the cutting edge strength and finished surface. In general, a corner radius 2-3 times the feed is recommended.

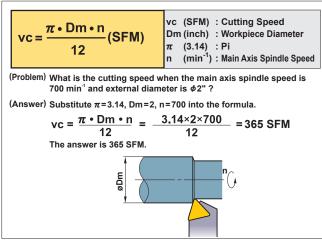
5. Increasing the corner radius too much results in poor chip control.

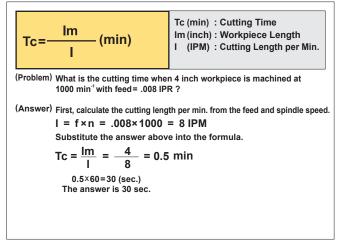


rigidity.

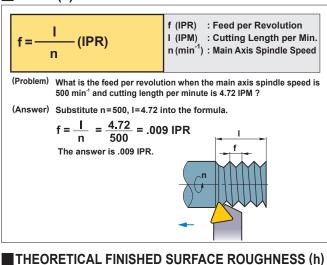
TECHNICAL DATA

Ν


Corner Radius and Chip Control Range


Note 1) Please refer to page N008 for chip shapes (A, B, C, D, E).

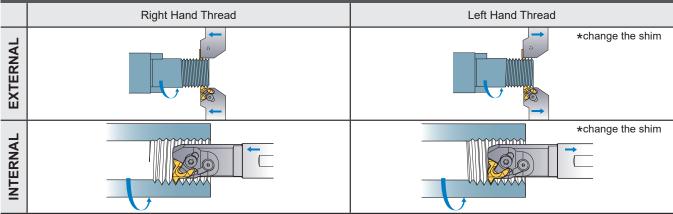
FORMULAS FOR TURNING


CUTTING SPEED (vc)

CUTTING TIME (Tc)

FEED (f)

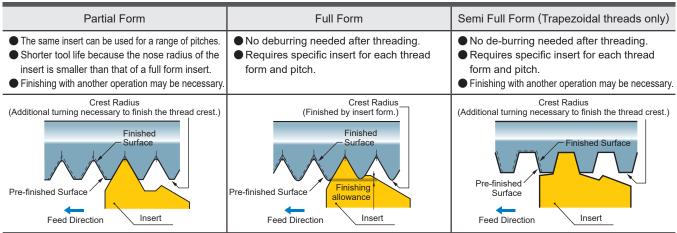
h (µinch) : Finished Surface Roughness f^2 f (IPR) : Feed per Revolution RE (inch) : Insert Corner Radius × 1000 (µinch) 8RE (Problem) What is the theoretical finished surface roughness when the insert corner radius is .031 inch and feed is .008 IPR ? (Answer) Substitute f= .008 IPR, RE= .031 into the formula. $h = \frac{(.008)^2}{8 \times .031} \times 1000 = .258 \,\mu inch$ The answer is .258 μ inch. Feed Feed Theoretical Theoretical Depth 1 Depth Surface Surface of Cut of Cut Roughness Roughness


TECHNICAL DATA

TROUBLE SHOOTING FOR THREADING

Problems	Observation	Causes	Solutions				
Low thread precision.	Threads do not mesh	Incorrect tool installation.	Set the insert center height at 0".				
	with each other.		Check holder inclination (Lateral).				
	Shallow thread.	Incorrect depth of cut.	Modify the depth of cut.				
		Lack of insert wear or plastic deformation resistance.	Refer to "Quickly generated flank wear." and "Large plastic deformation." below.				
Poor surface finish.	Surface damage.	Chips wrap around or clog the workpiece.	Change to flank infeed and control the chip discharge direction.				
			Change to an M-class insert with a 3-D chip breaker.				
		The side of the insert cutting edge interferes with the workpiece.	Check the lead angle and select an appropriate shim.				
	Surface tears.	Built-up edge (Welding).	Increase cutting speed.				
			Increase coolant pressure and volume.				
		Cutting resistance too high.	Decrease depth of cut per pass.				
	Surface vibrations.	Cutting speed too high.	Decrease the cutting speed.				
		Insufficient workpiece or tool clamping.	Re-check workpiece and tool clamping. (Chuck pressure, clamping allowance)				
		Incorrect tool installation.	Set the insert center height at 0".				
Short tool life.	Flank wear quickly generated.	Cutting speed too high.	Decrease the cutting speed.				
		Too many passes causes abrasive wear.	Reduce the number of passes.				
		Small depth of cut for the finishing pass.	Do not re-cut at 0" depth of cut. Depth of cut larger than .002" is recommended.				
	Non-uniform wear of the right and left sides of the cutting edge.	The workpiece lead angle and the tool lead angle do not match.	Check the workpiece lead angle and select an appropriate shim.				
	Chipping and fracture.	Cutting speed too low.	Increase cutting speed.				
		Cutting resistance too high.	Increase the number of passes and decrease the cutting resistance per pass.				
		Unstable clamping.	Check workpiece deflection.				
			Shorten tool overhang.				
			Recheck workpiece and tool clamping. (Chuck pressure, clamping allowance)				
		Chip packing.	Increase coolant pressure to blow away chips.				
			Change the tool pass to control chips. (Lengthen each pass to allow the coolant to clear the chips.				
			Change from standard internal cutting to back turning to prevent chip jamming.				
		Non-chamfered workpiece causes high resistance at the start of each pass.	Chamfer the workpiece entry and exit faces .				
	Large plastic	High cutting speed and large heat generation.	Decrease the cutting speed.				
	deformation.	Lack of coolant supply.	Check coolant supply is sufficient.				
			Increase coolant pressure and volume.				
		Cutting resistance too high.	Increase the number of passes and decrease the cutting resistance per pass.				

THREADING METHODS



 \cdot Usually, threads are cut feeding the insert towards the chuck.

When machining left hand threads, note that clamping rigidity is lowered due the application of back turning.

· When machining left hand threads, the lead angle is negative. Ensure an appropriate lead angle by changing the shim.

INSERT TYPES

INFEED METHODS

		Radial Infeed	Flank Infeed	1°-5° Modified Flank Infeed	Incremental Infeed
-eatures	Advantages	 Easiest to use. (Standard program for threading) Wide application. (Cutting conditions easy to change.) Uniform wear of the right and left sides of the cutting edge. 	 Relatively easy to use. (Semi-standard program for threading.) Reduced cutting force. Suitable for large pitch threads or materials that peel easily. Good chip discharge. 	 Preventing flank wear on the right side of the cutting edge. Reduced cutting force. Good for large pitch or materials that peel easily. Good chip discharge. 	 Uniform wear of the right and left sides of the cutting edge. Reduced cutting force. Good for large pitch or materials that peel easily.
Feat	Disadvantages	 Difficult chip control. Subject to vibration in the later passes due to long cutting edge in contact with workpiece. Ineffective for large pitch threading. Heavy load on the nose radius. 	 Large flank wear of the right side of a cutting edge. Relatively difficult to change cutting depth. (Re-programming necessary) 	 Complex machining programming. Difficult to change cutting depth. (NC programming necessary) 	 Complex machining programming. Difficult to change cutting depth. (Re-programming necessary) Chip control is difficult.

THREADING DEPTH

THREADING DEPTH

	Feat	ures
	Advantages	Disadvantages
V1 V1=V2 V2 Fixed cut area	 Easy to use. (Standard program for threading.) Superior resistance to vibration. (Constant cutting force.) 	 Long chips generated during the final pass. Complex calculation of cutting depth when changing the number of passes.
X1=X2 X1 X2	 Reduced load on nose radius during the first half of the passes. Easy chip control. (Optional setting of chip thickness) Easy to calculate cutting depth when changing the number of passes. 	 Subject to vibration in the later stages of cutting. (Increased cutting force) In some cases, changing the NC program is necessary.
Fixed cutting depth	Good chip control.	

* It is recommended to set the depth of cut of the final pass to .002-.001 inch

Large cutting depths can cause vibration, leading to a poor surface finish.

Formulas

Formulas to calculate infeed for each pass in a reduced series.

$\triangle ap_n = \frac{ap}{\sqrt{n_{ap}-1}} \times \sqrt{b}$	Example) External threading (ISO metric) Pitch : 1.0 mm ap : 0.6 mm nap : 5
<pre> △apn : Depth of cut n : Actual pass ap : Total depth of cut nap : Number of passes b : 1st pass 0.3 2nd pass 2–1=1 3rd pass 3–1=2</pre>	1st pass $\triangle ap_1 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{0.3} = 0.16 \rightarrow 0.16 (\triangle ap_1)$ 2nd pass $\triangle ap_2 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{2-1} = 0.3 \rightarrow 0.14 (\triangle ap_2-\triangle ap_1)$ 3rd pass $\triangle ap_3 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{3-1} = 0.42 \rightarrow 0.12 (\triangle ap_3-\triangle ap_2)$ 4th pass $\triangle ap_4 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{4-1} = 0.52 \rightarrow 0.1 (\triangle ap_4-\triangle ap_3)$ 5th pass $\triangle ap_5 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{5-1} = 0.6 \rightarrow 0.08 (\triangle ap_5-\triangle ap_4)$

NC Program for Modified Flank Infeed Example:- M12×1.0 5 passes modified 1°-3°

• Example:- M12×1.0 5 passes me	odified 1°-3° (mm)
External Threading	Internal Treading
G00 Z = 5.0	G00 Z = 5.0
X = 14.0	X = 10.0
G92 U-4.34 Z-13.0 F1.0	G92 U4.34 Z-13.0 F1.0
G00 W-0.07	G00 W–0.07
G92 U-4.64 Z-13.0 F1.0	G92 U4.64 Z-13.0 F1.0
G00 W-0.06	G00 W–0.05
G92 U-4.88 Z-13.0 F1.0	G92 U4.84 Z-13.0 F1.0
G00 W–0.05	G00 W-0.04
G92 U-5.08 Z-13.0 F1.0	G92 U5.02 Z-13.0 F1.0
G00 W-0.03	G00 W–0.03
G92 U-5.20 Z-13.0 F1.0	G92 U5.14 Z-13.0 F1.0
G00	G00

Selecting Cutting Conditions

			Priority											
		Tool life	Cutting force	Surface finish	Precision of thread	Chips discharge	Efficiency (Reduced passes)							
Threading	Radial	0		0	0		0							
methods	Flank	(\triangle : Modified)	0	(△ : Modified)		0								
Cutting donth	Fixed cutting depth					0								
Cutting depth	Fixed cut area	0	0	0	0		0							

Note) • Tool life and surface finish accuracy can be increased by changing the threading method from flank infeed to modified flank infeed. • Chip control can be improved by increasing the cutting depth in the later half of passes.

Cutting depth and the number of passes

Selection of the appropriate cutting depth and the right number of passes is vital for threading.

- For most threading, use a "threading cycle program," which has originally been installed on machines, and specify "total cutting depth" and "cutting depth in the first or final pass."
- Cutting depth and the number of passes are easy to change for the radial infeed method, thus making it easy to determine the appropriate cutting conditions.

Feature and benefits of Mitsubishi products

• Insert grades, specially produced for threading tools, ensure highly efficient cutting by enabling high-speed machining and a reduced number of passes.

Advice on improved threading

Increasing tool life

- To prevent damage to the nose radius -Recommended method - Modified flank infeed.
- To have uniform flank wear on both sides of a cutting edge Recommended method Radial infeed
- To prevent crater wear -Recommended method - Flank infeed

Preventing chip problems

- · Change to flank or modified infeed.
- During radial infeed cutting, use an inverted holder and change the coolant supply to a downward direction.
- When using the radial infeed method, set the minimum cutting depth at around .008 inch to make the chips thicker.
- Tangled chips during internal threading can damage the insert. In these cases, pause slightly away from the start point and clear the chips with coolant before every pass.
- · Change to M-class inserts with a 3-D chip breaker.

To achieve highly efficient machining

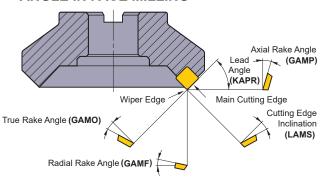
- Increase cutting speed. (Dependant on the maximum revolution and rigidity of the machine.)
- Reduce the number of passes. (Reduce by 30-40%.)
- A reduced number of passes can improve chip discharge because of the thicker chips generated.

Preventing vibration

- · Change to flank or modified infeed.
- When using radial infeed, reduce cutting depth in the later half of passes and lower the cutting speed.

Increased surface finish accuracy

- A final pass should be performed at the same depth of cut as the last regular pass.
- When using the flank infeed method, change to radial infeed only during the final pass.

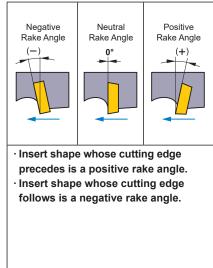

TECHNICAL DATA

TROUBLE SHOOTING FOR FACE MILLING

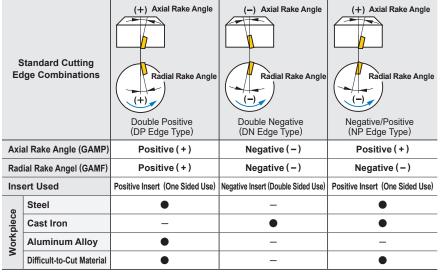
	Sol	utions			Gra ctio			С	Cut ond	ting itio	าร					vle a of t	nd he 1	Des Fool	ign				chine a lation o	
				Select a Tougher Grade	Select a Grade with Better Thermal Shock Resistance	Select a Grade with Better Adhesion Resistance	Cutting Speed	Feed Rate	Depth of Cut	Engage Angle	Flu	ting ids	Rake Angle	Corner Angle	Honing Strengthens the Cutting Edge	Cutter Diameter	Decrease the Number of Teeth	o Pocket	Use of a Wiper Insert	ccuracy	Improve Cutter Rigidity	Installation of the Tool and Workpiece	Shorten Tool Overhang	Machine with Inadequate Horsepower and Rigidity
Т	rouble	fors	Select a Harder Grade	Select a To	Select a Grac Thermal Sho	Select a Gra Adhesion Re	C	Up Dowr	*	ш ,× Up	Do Not Use Wate soluble Cutting F	Determine Dry or Wet Cutting		U Do	p wn y		Decrease the I	Wider Chip Pocket	Use of a W	Run-out Accuracy	Improve Ct	Installation of Workpiece	Shorten To	Machine wit Horsepowei
		Improper tool grade	•																					
a	Rapid insert wear	Improper cutting edge geometry Improper cutting conditions										Wet	•	*						•				
I LIF		Improper tool grade		•																				
Short Tool Life	Chipping and fracturing of	Improper cutting conditions Lack of cutting edge strength Thermal cracking						•	Q						*									
	cutting edge	occurs			•				2		•	Dry												
		Built-up edge occurs				•	6	6			•	Wet												
		Lack of rigidity																			•	•	•	•
		Improper cutting conditions	•				Ś																	
ish	Worsening	Welding occurs				•	6				•	Wet	6											
Poor Surface Finish	surface roughness	Poor run-out accuracy																	•	•				
rfac		Vibration occurs								6			6				•				•	•	•	•
r Su		Workpiece bending											6	٩	٩		•					•		
000	Not parallel or irregular	Tool clearance																			•	•	•	•
_	surface	Large back force											3				•							
		Chip thickness					1							<u>×</u>	<u>×</u>									
		is too large Cutter diameter is too large						X	X	3														
ng	Burr	Poor sharpness											6		٩									
ippi		A large corner angle																						
Burr / Chipping		Improper cutting conditions						Q						*										
Bur		Poor sharpness											6		٩									
	Chipping	Corner angle is too small												6										
		Vibration occurs								3			3		٩		•				•	•	٠	•
-		Welding occurs						×	x						x									
intro	Poor chip disposal,	Chip thickness					3	3																
Chip Control	chip jamming and chip	is too thin Cutter diameter is too small														•								
ch	packing	Poor chip disposal									•	Wet					•	•						

FUNCTION OF TOOL FEATURES FOR FACE MILLING

FUNCTION OF EACH CUTTING EDGE ANGLE IN FACE MILLING



Type of Angle	Symbol	Function	Effect				
Axial Rake Angle	GAMP	Determines chip disposal direction.	Positive : Excellent machinability.				
Radial Rake Angle	GAMF	Determines sharpness.	Negative : Excellent chip disposal.				
Lead Angle	KAPR	Determines chip thickness.	Small : Thin chips and small cutting impact. Large back force.				
True Rake Angle	GAMO	Determines actual sharpness.	Positive(large) : Excellent machinability. Minimal welding. Negative(large) : Poor machi- nability. Strong cutting edge.				
Cutting Edge Inclination	LAMS	Determines chip disposal direction.	Positive (large) : Excellent chip disposal. Low cutting edge strength.				


Each Cutting Edge Angle in Face Milling

STANDARD INSERTS

Positive and Negative Rake Angle

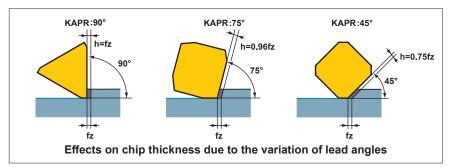
Standard Cutting Edge Shape

LEAD ANGLE (KAPR) AND CUTTING RESISTANCE

3000 Lead Angle : 90° Lead Angle : 75° Lead Angle : 45° Î Lead Angle Back force is in the minus 2500 Resistance Principal Principal Principal direction. Lifts the workpiece when ο 2000 90 Force Force Force workpiece clamp rigidity is low. 1500 1000 Feed Force Feed Force Feed Force Cutting Lead Angle 90 Back Force 500 Back Force 0 .004 .008 .012 0 6 .004 .008 .012 .004 .008 .012 Back Force fz(IPT) Lead Angle Lead Angle 75° is recommended -500 fz(IPT) fz(IPT) for face milling of workpiece 75° Workpiece : Alloy Steel (281HB) with low rigidity such as thin Tool: ø4* Single Insert Cutting Conditions : vc=410 SFM ap=.157 inch ae=4.33 inch workpiece. Lead Angle 75 **Cutting Resistance Comparison between Different Lead Angles** Lead Angle The largest back force. Back Force Bends thin workpiece and lowers **45°** Principal Force cutting accuracy. * Prevents workpiece edge Feed Force Lead Angle 45 chipping in cast iron cutting. Table Feed * Principal force: Force is in the opposite direction of face milling rotation.

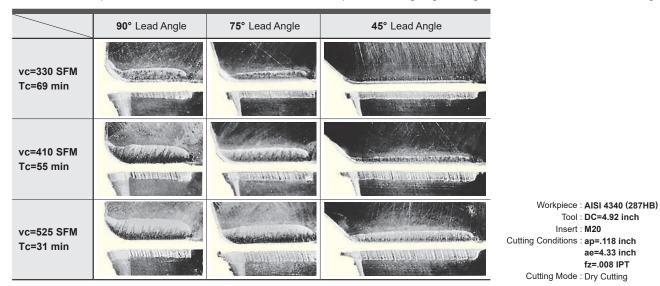
Three Cutting Resistance Forces in Milling

* Back force: Force that pushes in the axial direction. * Feed Force: Force is in the feed direction and is caused by table feed. Ν


N021

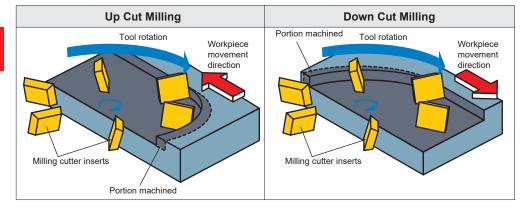
FUNCTION OF TOOL FEATURES FOR FACE MILLING

LEAD ANGLE AND TOOL LIFE

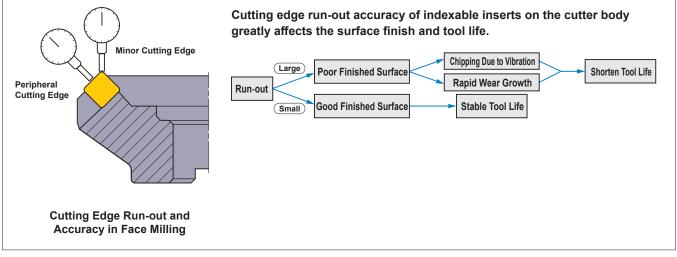

Lead Angle and Chip Thickness

When the depth of cut and feed per tooth, fz, are fixed, the larger lead angle (KAPR) is, then the thinner chip thickness (h) becomes (for a 45° KAPR, it is approx. 75% that of a 0° KAPR). This can be seen in below. Therefore as the KAPR increases, the cutting resistance decreases resulting in longer tool life. Note however, if the chip thickness is too large then the cutting resistance can increase leading to vibrations and shortened tool life.

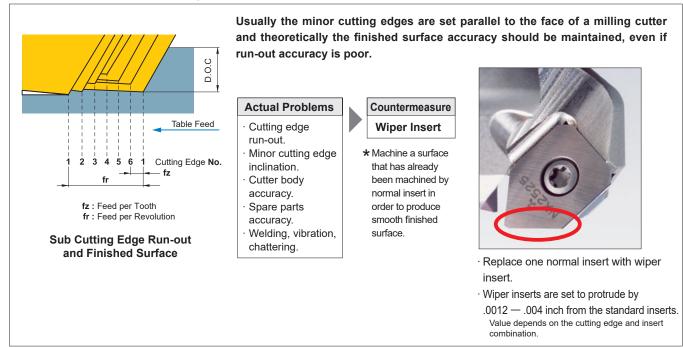
• Corner Angle and Crater Wear


Below shows wear patterns for different lead angles. When comparing crater wear for 90° and 45° lead angles, it can be clearly seen that the crater wear for 90° lead angle is larger. This is because if the chip thickness is relatively large, the cutting resistance increases and so promotes crater wear. As the crater wear develops then cutting edge strength will reduce and lead to fracturing.

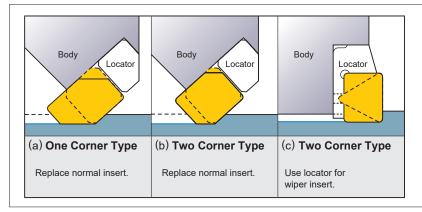
Ν


UP CUT AND DOWN CUT MILLING

Which method to be used will depend on the machine and the face mill cutter that has been selected. Generally down cut machining offers longer tool life than up cut milling.



FINISHED SURFACE

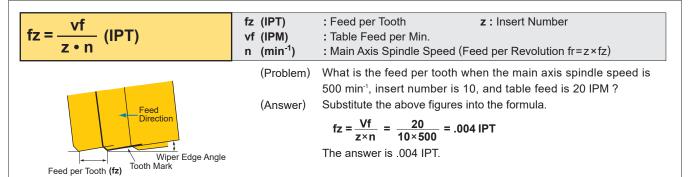

• Cutting Edge Run-out Accuracy

Improve Finished Surface Roughness

How to Set a Wiper Insert

- Wiper edge length has to be longer than the feed per revolution.
- Too long wiper edge causes chattering.
- When the cutter diameter is large and feed per revolution is longer than the wiper edge, use two or three wiper inserts.
- · When using two wiper inserts or more, eliminate run-out of wiper inserts.
- · Use a high hardness grade (high wear resistance) for wiper inserts.

Ν


N023

FORMULAS FOR FACE MILLING

CUTTING SPEED (vc)

vc = $\frac{\pi \cdot DC \cdot n}{12}$ (SFM)	vc (SFM) : Cutting Speed π (3.14) : Pi	DC (inch) : Cutter Diameter n (min⁻¹) : Main Axis Spindle Speed
	and cutter dian	• -
	(14, DC=5", n=350 into the formula. 1 =

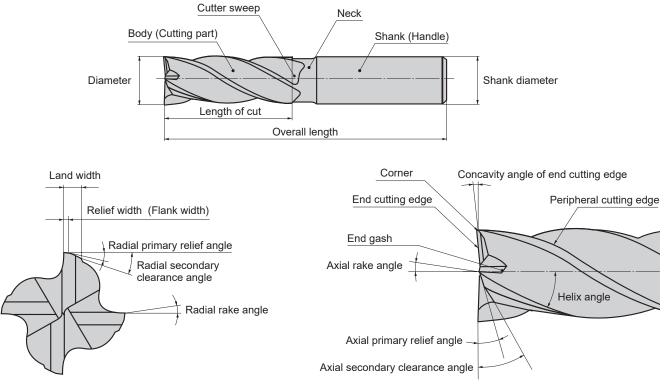
FEED PER TOOTH (fz)

TABLE FEED (vf)

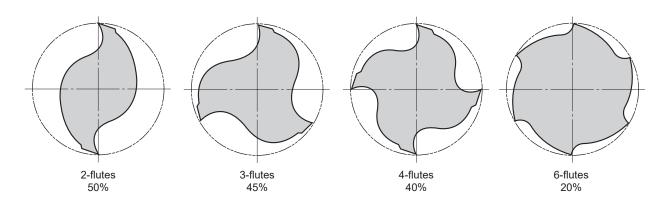
vf = fz • z • n (IPM)	vf (IPM) fz (IPT) n (min ⁻¹)	: Table Feed per Min. : Feed per Tooth z : Insert Number : Main Axis Spindle Speed
	(Problem) (Answer)	What is the table feed when feed per tooth is .004 IPT, with 10 inserts and main axis spindle speed is 500 min ⁻¹ ? Substitute the above figures into the formula. $vf = fz \times z \times n = .004 IPT \times 10 \times 500 = 20 IPM$ The answer is 20 IPM.

CUTTING TIME (Tc)

Tc = <u>L</u> (min)	Tc (min) : Cutting Time vf (IPM) : Table Feed per Min. L (inch) : Total Table Feed Length (Workpiece Length(I)+Cutter Diameter(DC))						
	(Problem) (Answer)	surface of a cast iron (AISI No 3	01×16×200=32 IPM _=12+8=20 inch				
		Tc = $\frac{20}{32}$ = 0.625 (min) 0.625 × 60 = 37.5 (sec.)	The answer is 37.5 sec.				


TROUBLE SHOOTING FOR END MILLING

			Insert Grade Selection		C	utt	ing	Со	ndit	ion	s		St		and f the		esig ol	jn	Ins	Ma stal	chi latio	ne a on c	and of To	ool
	Solutions Factors Trouble			Cutting Speed	Feed Rate	Depth of Cut	Decrease Pick Feed Rate			F	uttir Iuid	s	Helix Angle	Number of Flutes	Concavity Angle of End Cutting Edge	Tool Diameter	Mill Rigidity	ocket	I Overhang	on Accuracy	in-out Accuracy	ו and Exchange	Clamping Power	ility, Rigidity
Т			Coated Tool		Up own	*	Decrease Pic	Down Cut	Air Blow	Increase Coola Quantity	Do Not Use Water- soluble Cutting Fluid	Determine Dry Wet Cutting		Up	o ≯ vn∖		Improve End Mill Rigidity	Wider Chip Pocket	Shorten Tool Overhang	Tool Installation Accuracy	Spindle Collet Run-out Accuracy	Collet Inspection and Exchange	Increase Chuck Clamping Power	Machine Stability, Rigidity
		Non-coated insert is used	•						-									-		-		-	_	
	Large wear	Not enough flutes												6										
	at the peripheral cutting edge	Improper cutting conditions		S.							•													
		Up cut milling						Down Cut																
Short Tool Life		Improper cutting conditions																						
00	Chipping	Fragile cutting edge															•							
L T	5ppg	Insufficient clamping force																				•	•	
Shc		Poor clamping rigidity																	•	•	•	•	•	•
		Improper cutting conditions				S																		
	Breakage	Poor end mill rigidity														6	•							
	during cutting	Overhang longer than necessary				٩													•					
		Chip packing								•								•						
	Vibration	Improper cutting conditions																						
	during	Poor end mill rigidity											6	6		6	•							
	cutting	Poor clamping rigidity																	•	•	•	•	•	•
L L	Poor wall	Large cutting edge wear	•																					
nis	surface	Improper cutting conditions																						
e Fi	roughness	Chip jamming							•	•		• Wet												
urface Finish	Poor bottom	The end cutting edge does not have a concave angle			٩	٩									6									
	surface roughness	Large pick feed					•																	
Poor Si	-	Large cutting edge wear	•																					
Å	Out of vertical	Improper cutting conditions																						
	vertical	Poor end mill rigidity			×	×							3	3		3	•							
	Poor surface finish	Improper cutting conditions		S.		S.																		
	accuracy	Poor clamping rigidity																	•	•	٠	•	•	•
Burrs	Burr, workpiece	Improper cutting conditions																						
) jing	chipping	Large helix angle																						
Chipp	Quick burr	Notch wear occurs	•																					
Burr /	formation	Improper cutting conditions		٩	6																			
ntrol		Metal removal			۲																			
Chip Co	Chip packing	Lack of flute			×	K								۲				•						
Chip Control Burr / Chipping / Burrs	Chip packing	too large			•	N								ę				•						


TECHNICAL DATA

END MILL FEATURES AND SPECIFICATION

NOMENCLATURE

COMPARISON OF SECTIONAL AREA OF CHIP POCKET

CHARACTERISTICS AND APPLICATIONS OF DIFFERENT-NUMBER-OF-FLUTE END MILLS

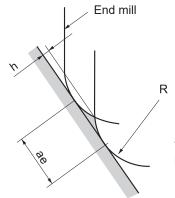
		2-flutes	3-flutes	4-flutes	6-flutes		
ture	Advantage	Effective chip disposal. Horizontal feed milling possible.	Effective chip disposal. Horizontal feed milling possible.	High rigidity.	High rigidity. Superior cutting edge durability.		
Feature	Fault	Low rigidity.	Diameter is not measured easily.	Chip disposal is poor.	Chip disposal is poor.		
	Usage	Various cutting modes including slotting, shoulder milling and drilling.	Slotting, shoulder milling Heavy cutting, finishing	Shallow slotting, shoulder milling Finishing	Machining hardened steels. Shallow slotting, shoulder milling.		

END MILL TYPE AND GEOMETRY

PERIPHERAL CUTTING EDGE

Туре	Shape	Feature
Ordinary Flute		Regular flute geometry as shown is most commonly used for roughing and finishing of side milling, slotting and shoulder milling.
Tapered Flute		A tapered flute geometry is used for special applications such as mold drafts and for applying taper angles after conventional straight edged milling.
Roughing Flute		Roughing type geometry has a wave like edge form and breaks the material into small chips. Additionally the cutting resistance is low enabling high feed rates when roughing. The inside face of the flute is suitable for regrinding.
Formed Flute		Special form geometry as shown is used for producing corner radii on components. There are an infinite number of different geometry's that can be manufactured using such style of cutters.

END CUTTING EDGE


Туре	Shape	Feature
Square End (With Center Hole)		Generally used for side milling, slotting and shoulder milling. Plunge cutting is not possible due to the center hole that is used to ensure accurate grinding and regrinding of the tool.
Square End (Center Cut)		Generally used for side milling, slotting and shoulder milling. Plunge cutting is possible and greater plunge cutting efficiency is obtained when using fewer flutes. Regrinding on the flank face can be done.
Ball End		Geometry completely suited for curved surface milling. At the extreme end point the chip pocket is very small leading to inefficient chip evacuation.
Corner Radius End		Used for radius profiling and corner radius milling. When pick feed milling an end mill with a large diameter and small corner radius can be efficiently used.

SHANK AND NECK PARTS

Туре	Shape	Feature
Standard (Straight Shank)		Most widely used type.
Long Shank		Long shank type for deep pocket and shoulder applications.
Long Neck		Long neck geometry can be used for deep slotting and is also suitable for boring.
Taper Neck		Long taper neck features are best utilized on deep slotting and mold draft applications.

PITCH SELECTION OF PICK FEED

PICK FEED MILLING (CONTOURING) WITH BALL NOSE END MILLS, END MILLS WITH CORNER RADIUS

h=R •
$$\left[1-\cos\left\{\sin^{-1}\left(\frac{ae}{2R}\right)\right\}\right]$$

R : Radius of Ball Nose(RE), Corner Radius(RE)

Unit: inch

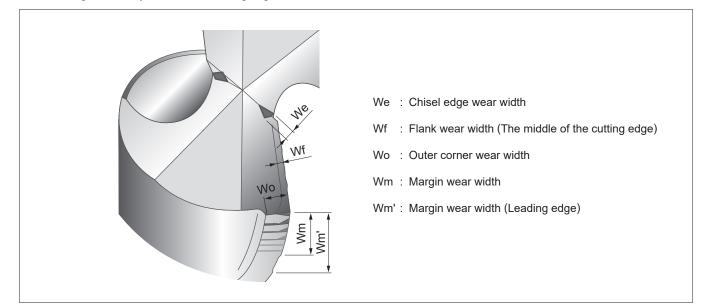
ae : Pick Feed

h : Cusp Height

CORNER R OF END MILLS AND CUSP HEIGHT BY PICK FEED

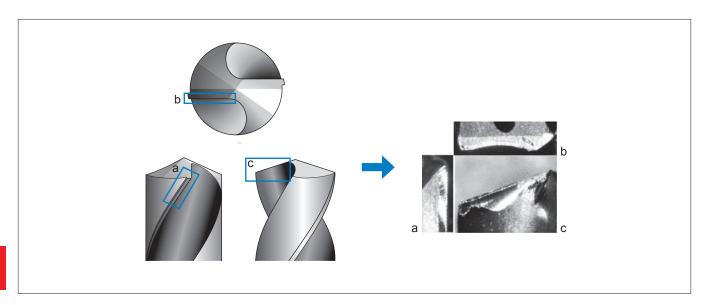
ae **Pick Feed** .004 .008 .020 .024 R .012 .016 .028 .031 .035 .039 0.5 .0001 .0004 .0009 .0017 .0026 .0039 _ _ _ _ 1 .00004 .0002 .0004 .0008 .0016 .0018 .0025 .0033 .0042 _ 1.5 .00004 .0001 .0003 .0005 .0008 .0012 .0016 .0021 .0027 .0034 2 .0006 .00004 .0001 .0002 .0004 .0009 .0012 .0016 .0020 .0025 2.5 .00007 .0005 .0007 .0013 .00004 .0002 .0003 .0010 .0016 .0020 3 .00007 .0002 .0003 .0004 .0006 .0008 .0011 .0013 .0017 .00004 .0001 .0002 .0003 .0004 .0006 .0008 .0010 .0012 4 .00004 .00007 .0002 .0002 .0004 .0005 .0006 .0008 .0010 5 .00004 .00007 .0001 .0002 .0003 .0004 .0005 .0007 .0008 6 .00004 .0005 8 .0001 .0002 .0002 .0003 .0004 .0006 .00004 .0002 .0004 .0005 10 .00007 .0001 .0002 .0003 12.5 .00004 .00007 .0001 .0002 .0002 .0002 .0003 .0004

ae		Pick Feed									
R	.043	.047	.051	.055	.059	.063	.067	.071	.075	.079	
0.5	—	—	—	—	—	—	—	—	—	_	
1	—	_	—	_	—	—	—	—	—	—	
1.5	.0041	—	—	—	—	—	—	—	—	—	
2	.0030	.0036	.0043	—	—	—	—	—	—	—	
2.5	.0024	.0029	.0034	.0039	_	—	—	—	_	—	
3	.0020	.0024	.0028	.0033	.0037	.0043	—	—	_	—	
4	.0015	.0018	.0021	.0024	.0028	.0032	.0036	.0041	—	—	
5	.0012	.0014	.0017	.0019	.0022	.0025	.0029	.0032	.0036	.0040	
6	.0010	.0012	.0014	.0016	.0019	.0021	.0024	.0027	.0030	.0033	
8	.0007	.0009	.0010	.0012	.0014	.0016	.0018	.0020	.0022	.0025	
10	.0006	.0007	.0008	.0010	.0011	.0013	.0014	.0016	.0018	.0020	
12.5	.0005	.0006	.0007	.0008	.0009	.0010	.0011	.0013	.0014	.0016	

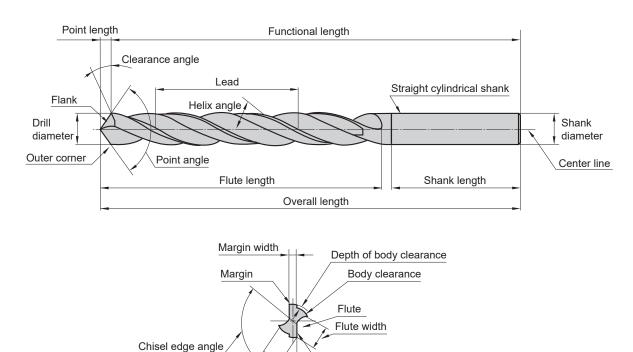

TROUBLE SHOOTING FOR DRILLING

			Cutting Conditions						Style and Design of the Tool						Machine and Installation of Tool								
	S	olutions	Cutting Speed	Feed Rate	at Initial Entry	when Exiting		ccuracy and he Pre-hole	F	uttir Fluid eun	s –	Chisel Width	Honing Width	Core Thickness	lute Length	Lip Height	Coolant Holes	Drill with ning	on Accuracy	l Overhang	rkpiece Face	ation Accuracy	llity, Rigidity
т	rouble	actors	U		Lower the Feed at Initial Entry	Lower the Feed when Exiting	Step Feed	Increase the Accuracy and the Depth of the Pre-hole	Increase Oil Ratio	Increase Volume	Increase Coolant Pressure	L	arge Small	1	Shorten the Flute Length	Decrease the Lip Height	Use a Drill with Coolant Holes	Change to a Drill with X Type Thinning	Tool Installation Accuracy	Shorten Tool Overhang	Flatten the Workpiece Face	Workpiece Installation Accuracy	Machine Stability, Rigidity
	Drill breakage	Lack of drill rigidity Improper cutting conditions Large deflection of the tool holder Workpiece face is inclined		•										•	•				•		•		•
Short Tool Life	Large wear at the peripheral cutting edge	Improper cutting conditions Increase in temp. at cutting point Poor run-out accuracy							•	•							•		•				
Short	Chipping of the peripheral cutting edge	Improper cutting conditions Large deflection of the tool holder Chattering, vibration		•			•						•						•	•		•	•
	Chisel edge chipping	The chisel edge width is too large Poor entry Chattering, vibration			•							•	•							•		•	•
	Hole diameter increases	Lack of drill rigidity Improper drill geometry											_	*	•	•							
ccuracy	Hole diameter becomes smaller	Increase in temp. at cutting point Improper cutting conditions Improper drill	 Image: A second s						•	•						•	•						
Poor Hole Accı	Poor straightness	geometry Lack of drill rigidity Large deflection of the tool holder Poor guiding properties						•						*	•				•				•
Po	Poor hole positioning accuracy, roundness and surface finish	Lack of drill rigidity Poor entry Improper cutting conditions Large deflection of the tool holder			•									~	•			•	•				•
Burr	Burrs at the hole exit	Improper drill geometry Improper cutting conditions				•							S.										
Chip Control	Long chips	Improper cutting conditions Poor chip disposal		*				•		•	•						•						
Chip C	Chip packing	Improper cutting conditions Poor chip disposal	S.	S.				•		•	•						•						

DRILL WEAR CONDITION AND CUTTING EDGE DAMAGE


DRILL WEAR CONDITION

The diagram below shows a simple drawing depicting the wear of a drill's cutting edge. The generation and the amount of wear differ according to the workpiece and cutting conditions used. But generally, the peripheral wear is largest and determines a drill tool life. When regrinding, the flank wear at the point needs to be ground away completely. Therefore, if there is large wear, more material needs to be ground away to renew the cutting edge.


CUTTING EDGE DAMAGE

When drilling, the cutting edge of the drill can suffer from chipping, fracture and abnormal damage. In such cases it is important to take a closer look at the damage, investigate the cause and take countermeasures.

DRILL TERMINOLOGY AND CUTTING CHARACTERISTICS

NAMES OF EACH PART OF A DRILL

Cutting edge

SHAPE SPECIFICATION AND CUTTING CHARACTERISTICS

Helix Angle	Is the inclination of the flute with respect to the axial direction of a drill, which corresponds to the rake angle. The rake angle of a drill differs according to the position along the cutting edge. The rake angle is largest at the periphery and smallest towards the center of the cutting edge. The chisel edge has a negative rake angle, crushing the work.
	High-hardness material Small . Rake Angle ·· Large Soft material (Aluminum, etc.)
Flute Length	It is determined by depth of hole, guide bush length, and regrinding allowance. Since the influence on the tool life is great, it is necessary to minimize it as much as possible.
Deint Angle	In general, the angle is 118° for high speed steel drills and 130–140° for carbide drills.
Point Angle	Soft material with good machinability Small . Point angle ·· Large For hard material and high-efficiency machining
Web Thickness	It is an important element that determines the rigidity and chip disposal performance of a drill. The web thickness is set according to applications. Low cutting resistance Low rigidity Good chip disposal performance Machinable material Thin I Web thickness I Thick
Margin	The margin determines the drill diameter and functions as a drill guide during drilling. The margin width is decided taking into consideration the friction within the hole to be drilled. Poor guiding performance Small . Margin width Large Good guiding performance
Diameter Back Taper	To reduce friction with the inside of the drilled hole, the portion from the point to the shank is tapered slightly. The degree is usually represented by the quantity of reduction in the diameter with respect to the flute length, which is approx0016"016"/4".

Land width

DRILL TERMINOLOGY AND CUTTING CHARACTERISTICS

CUTTING EDGE GEOMETRY AND ITS INFLUENCE

As shown in table below, it is possible to select the most suitable cutting edge geometry for different applications. If the most suitable cutting edge geometry is selected then higher machining efficiency and higher hole accuracy can be obtained.

Typical Cutting Edge Geometries

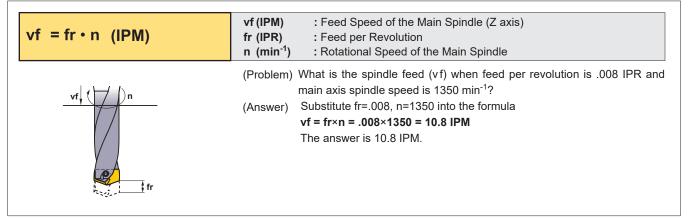
Grinding Name	Geometry	Features and Effect	Use
Conical		The flank is conical and the clearance angle increases toward the center of the drill.	• For general use.
Flat		• The flank is flat and facilitates cutting.	• Mainly for small diameter drills.
Three Rake Angles		 As there is no chisel edge, the results are high centripetal force and small hole oversize. Requires a special grinding machine. Requires grinding of three sides. 	 For drilling operations that require high hole accuracy and positioning accuracy.
Spiral Point		 To increase the clearance angle near the center of the drill, conical grinding combined with irregular helix. S type chisel edge with high centripetal force and machining accuracy. 	 For drilling that requires high accuracy.
Radial Lip		 The cutting edge is ground radial with the aim of dispersing load. High machining accuracy and finished surface roughness. For through holes, small burrs on the base. Requires a special grinding machine. 	 For cast iron and light alloy. For cast iron plates. Steel
Center Point Drill		• This geometry has two-stage point angle for better concentricity and a reduction in shock when exiting the workpiece.	• For thin sheet drilling.

WEB THINNING

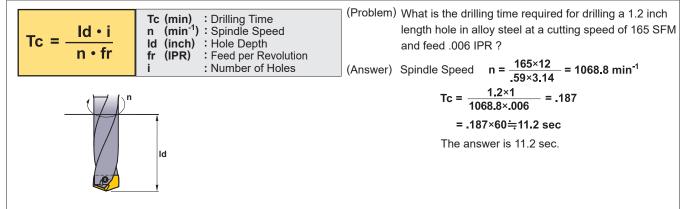
The rake angle of the cutting edge of a drill reduces toward the center, and it changes into a negative angle at the chisel edge. During drilling, the center of a drill crushes the work, generating 50–70% of the cutting resistance. Web thinning is very effective for reduction in the cutting resistance of a drill, early removal of cut chips at the chisel edge, and better initial bite.

Geometry	X type	XR type	S type	N type
Features	The thrust load substantially reduces, and the bite performance improves. This is effective when the web is	The initial performance is slightly inferior to that of the X type, but the cutting edge is tough and the applicable range	Popular design, easy cutting type.	Effective when the web is comparatively thick.
	thick.	of workpieces is wide.		

DRILLING CHIPS


Types of Chips	Geometry	Features and Ease of Raking
Conical Spiral	STATISTICS	Fan-shaped chips cut by the cutting edge are curved by the flute. Chips of this type are produced when the feeding rate of ductile material is small. If the chip breaks after several turns, the chip raking performance is satisfactory.
Long Pitch	Jurne Contraction	Long pitch chips exit without coiling and will coil around the drill.
Fan		This is a chip broken by the restraint caused by the drill flute and the wall of a drilled hole. It is generated when the feed rate is high.
Segment		A conical spiral chip that is broken before the chip grows into the long-pitch shape by the restraint caused by the wall of the drilled hole due to the insufficiency of ductility. Excellent chip disposal and chip discharge.
Zigzag	aaaa	A chip that is buckled and folded because of the shape of flute and the characteristics of the material. It easily causes chip packing in the flute.
Needle		Chips broken by vibration or broken when brittle material is curled with a small radius. The raking performance is satisfactory, but these chips can become closely packed jams.

FORMULAS FOR DRILLING


CUTTING SPEED (vc)

vc = $\frac{\pi \cdot DC \cdot n}{12}$ (SFM)	vc (SFM): Cutting SpeedDC(inch): Drill Diameter π (3.14): Circular Constantn (min ⁻¹): Rotational Speed of the Main Spindle
DC	(Problem) What is the cutting speed when main axis spindle speed is 1350 min ⁻¹ and drill diameter is .500 inch ? (Answer) Substitute π =3.14, DC=.500 inch, n=1350 into the formula $vc = \frac{\pi \cdot DC \cdot n}{12} = \frac{3.14 \times .500 \times 1350}{12} = 176.6$ SFM The answer is 176.6 SFM

FEED OF THE MAIN SPINDLE (vf)

DRILLING TIME (Tc)

Ν

TECHNICAL DATA

TOOL WEAR AND DAMAGE

CAUSES AND COUNTERMEASURES

Tool	Damage Form	Cause	Countermeasure
Flank Wear	-	 Tool grade is too soft. Cutting speed is too high. Flank angle is too small. Feed rate is extremely low. 	 Tool grade with high wear resistance. Lower cutting speed. Increase flank angle. Increase feed rate.
Crater Wear		 Tool grade is too soft. Cutting speed is too high. Feed rate is too high. 	 Tool grade with high wear resistance. Lower cutting speed. Lower feed rate.
Chipping		 Tool grade is too hard. Feed rate is too high. Lack of cutting edge strength. Lack of shank or holder rigidity. 	 Tool grade with high toughness. Lower feed rate. Increase honing. (Round honing is to be changed to chamfer honing.) Use large shank size.
Fracture		 Tool grade is too hard. Feed rate is too high. Lack of cutting edge strength. Lack of shank or holder rigidity. 	 Tool grade with high toughness. Lower feed rate. Increase honing. (Round honing is to be changed to chamfer honing.) Use large shank size.
Plastic Deformation		 Tool grade is too soft. Cutting speed is too high. Depth of cut and feed rate are too large. Cutting temperature is high. 	 Tool grade with high wear resistance. Lower cutting speed. Decrease depth of cut and feed rate. Tool grade with high thermal conductivity.
Welding	A CONTRACTOR	 Cutting speed is low. Poor sharpness. Unsuitable grade. 	 Increase cutting speed. (For ANSI 1045, cutting speed 260 SFM.) Increase rake angle. Tool grade with low affinity. (Coated grade, cermet grade)
Thermal Cracks		 Expansion or shrinkage due to cutting heat. Tool grade is too hard. *Especially in milling. 	 Dry cutting. (For wet cutting, flood workpiece with cutting fluid) Tool grade with high toughness.
Notching		 Hard surfaces such as uncut surface, chilled parts and machining hardened layer. Friction caused by jagged shaped chips. (Caused by small vibration) 	 Tool grade with high wear resistance. Increase rake angle to improve sharpness.
Flaking		 Cutting edge welding and adhesion. Poor chip disposal. 	 Increase rake angle to improve sharpness. Enlarge chip pocket.

TECHNICAL DATA

TECHNICAL DATA

MATERIAL CROSS REFERENCE LIST

CARBON STEEL

USA	Japan	Gei	many	U.	К.	France	Italy	Spain	Sweden	China
AISI/SAE	JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	GB
A570.36	STKM 12A STKM 12C	1.0038	RSt.37-2	4360 40 C	-	E 24-2 Ne	-	_	1311	15
1015	-	1.0401	C15	080M15	-	CC12	C15, C16	F.111	1350	15
1020	_	1.0402	C22	050A20	2C	CC20	C20, C21	F.112	1450	20
1213	SUM22	1.0715	9SMn28	230M07	1A	S250	CF9SMn28	F.2111 11SMn28	1912	Y15
12L13	SUM22L	1.0718	9SMnPb28	-	-	S250Pb	CF9SMnPb28	11SMnPb28	1914	-
-	-	1.0722	10SPb20	-	-	10PbF2	CF10Pb20	10SPb20	-	-
1215	_	1.0736	9SMn36	240M07	1B	S300	CF9SMn36	12SMn35	_	Y13
12L14	-	1.0737	9SMnPb36	-	-	S300Pb	CF9SMnPb36	12SMnP35	1926	-
1015	S15C	1.1141	Ck15	080M15	32C	XC12	C16	C15K	1370	15
1025	S25C	1.1158	Ck25	-	-	-	-	-	-	25
4572-60	_	1.8900	StE380	4360 55 E	-	_	FeE390KG	_	2145	-
1035	-	1.0501	C35	060A35	-	CC35	C35	F.113	1550	35
1045	-	1.0503	C45	080M46	-	CC45	C45	F.114	1650	45
1140	-	1.0726	35S20	212M36	8M	35MF4	-	F210G	1957	-
1039	_	1.1157	40Mn4	150M36	15	35M5	-	_	-	40Mn
1335	SMn438(H)	1.1167	36Mn5	-	-	40M5	-	36Mn5	2120	35Mn2
1330	SCMn1	1.1170	28Mn6	150M28	14A	20M5	C28Mn	_	-	30Mn
1035	S35C	1.1183	Cf35	060A35	-	XC38TS	C36	_	1572	35Mn
1045	S45C	1.1191	Ck45	080M46	-	XC42	C45	C45K	1672	Ck45
1050	S50C	1.1213	Cf53	060A52	-	XC48TS	C53	_	1674	50
1055	-	1.0535	C55	070M55	9	-	C55	_	1655	55
1060	-	1.0601	C60	080A62	43D	CC55	C60	_	_	60
1055	S55C	1.1203	Ck55	070M55	-	XC55	C50	C55K	-	55
1060	S58C	1.1221	Ck60	080A62	43D	XC60	C60	-	1678	60Mn
1095	-	1.1274	Ck101	060A96	-	XC100	_	F.5117	1870	-
N1	SK3	1.1545	C105W1	BW1A	-	Y105	C36KU	F.5118	1880	-
N210	SUP4	1.1545	C105W1	BW2	-	Y120	C120KU	F.515	2900	-

ALLOY STEEL

USA	Japan	Geri	many	U.	К.	France	Italy	Spain	Sweden	China
AISI/SAE	JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	GB
A573-81	SM400A, SM400B SM400C	1.0144	St.44.2	4360 43 C	_	E28-3	_	-	1412	-
-	SM490A, SM490B SM490C	1.0570	St52-3	4360 50 B	_	E36-3	Fe52BFN Fe52CFN	-	2132	-
5120	-	1.0841	St52-3	150M19	-	20MC5	Fe52	F.431	2172	-
9255	-	1.0904	55Si7	250A53	45	55S7	55Si8	56Si7	2085	55Si2Mn
9262	-	1.0961	60SiCr7	-	-	60SC7	60SiCr8	60SiCr8	-	-
ASTM 52100	SUJ2	1.3505	100Cr6	534A99	31	100C6	100Cr6	F.131	2258	GCr15
ASTM A204Gr.A	-	1.5415	15Mo3	1501-240	-	15D3	16Mo3KW	16Mo3	2912	-
4520	-	1.5423	16Mo5	1503-245-420	-	-	16Mo5	16Mo5	-	-
ASTM A350LF5	-	1.5622	14Ni6	-	-	16N6	14Ni6	15Ni6	-	-
ASTM A353	-	1.5662	X8Ni9	1501-509-510	-	-	X10Ni9	XBNi09	-	-
3135	SNC236	1.5710	36NiCr6	640A35	111A	35NC6	-	-	-	-
3415	SNC415(H)	1.5732	14NiCr10	_	-	14NC11	16NiCr11	15NiCr11	-	-
3415, 3310	SNC815(H)	1.5752	14NiCr14	655M13	36A	12NC15	-	-	-	-
8620	SNCM220(H)	1.6523	21NiCrMo2	805M20	362	20NCD2	20NiCrMo2	20NiCrMo2	2506	-
8740	SNCM240	1.6546	40NiCrMo22	311-Type 7	-	-	40NiCrMo2(KB)	40NiCrMo2	-	-
_	-	1.6587	17CrNiMo6	820A16	-	18NCD6	-	14NiCrMo13	-	-
5015	SCr415(H)	1.7015	15Cr3	523M15	-	12C3	-	_	-	15Cr

USA	Japan	Gou	rmany	11	К.	France	Italy	Spain	Sweden	China
AISI/SAE	JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	Sweden	GB
5140	SCr440	1.7045	42Cr4	D3		AFNOR	UNI	42Cr4	2245	40Cr
5140		1.7045	55Cr3	- 527A60	48	_ 55C3	-	42014	2245	20CrMn
0100	SCM415(H)		15CrMo5	527A00	40	12CD4	-	– 12CrMo4	2216	20011111
– ASTM A182	. ,	1.7335	13CrMo4 4	— 1501-620Gr27	-	15CD3.5	– 14CrMo45	14CrMo45	2210	-
F11, F12	_	1.7555	13011004 4	1501-0206127	-	15CD3.5	140110045	140110045	-	-
ASTM A182				1501-622		13CD4.3	12CrMo9			
F.22	-	1.7380	10CrMo910	Gr31, 45	-	12CD3	12CrMo10	TU.H	2218	-
_	_	1.7715	14MoV63	1503-660-440	_	-	_	13MoCrV6	_	
_	_	1.8523	39CrMoV13 9		40C	_	36CrMoV12	1	_	_
9840	_	1.6511	36CrNiMo4		110	40NCD3		35NiCrMo4	_	_
4340	_	1.6582	34CrNiMo6		24	35NCD6	35NiCrMo6(KB)		2541	40CrNiMoA
5132	SCr430(H)	1.7033	34Cr4	530A32	18B	32C4	34Cr4(KB)		_	35Cr
5140	. ,	1.7035	41Cr4	530M40	18	42C4	41Cr4	42Cr4	_	40Cr
5115	_	1.7131	16MnCr5	(527M20)	_	16MC5	16MnCr5	16MnCr5	2511	18CrMn
4130	SCM420	1.7218	25CrMo4	1717CDS110	_	25CD4	25CrMo4(KB)		2225	
-100	SCM430	1.7210	20011104	708M20		20004		55Cr3		30CrMn
4137	SCM432	1.7220	34CrMo4	708A37	19B	35CD4	35CrMo4	34CrMo4	2234	35CrMo
4135	SCCRM3	1.7220	34011004	100431	190	33004	55011004	34011004	2234	55011010
4140 4142	SCM 440	1.7223	41CrMo4	708M40	19A	42CD4TS	41CrMo4	42CrMo4	2244	40CrMoA
4140	SCM440(H)	1.7225	42CrMo4	708M40	19A	42CD4	42CrMo4	42CrMo4	2244	42CrMo 42CrMnMo
-	-	1.7361	32CrMo12	722M24	40B	30CD12	32CrMo12	F.124.A	2240	-
6150	SUP10	1.8159	50CrV4	735A50	47	50CV4	50CrV4	51CrV4	2230	50CrVA
_	_	1.8509	41CrAlMo7	905M39	41B	40CAD6 40CAD2	41CrAlMo7	41CrAlMo7	2940	_
L3	-	1.2067	100Cr6	BL3	-	Y100C6	-	100Cr6	-	CrV, 9SiCr
_	SKS31	1.2419	105WCr6	_	_	105WC13	100WCr6	105WCr5	2140	0-14/14
	SKS2, SKS3						107WCr5KU			CrWMo
L6	SKT4	1.2713	55NiCrMoV6	BH224/5	-	55NCDV7	-	F.520.S	-	5CrNiMo
ASTM A353	-	1.5662	X8Ni9	1501-509	-	-	X10Ni9	XBNi09	-	-
2515	-	1.5680	12Ni19	-	-	Z18N5	-	-	-	-
-	-	1.6657	14NiCrMo134	832M13	36C	-	15NiCrMo13	14NiCrMo131	-	-
D3	SKD1	1.2080	X210Cr12	BD3	-	Z200C12	X210Cr13KU	X210Cr12	-	Cr12
ASTM D3							X250Cr12KU			
D2	SKD11	1.2601	X153CrMoV12		-		X160CrMoV12		-	Cr12MoV
A2		1.2363	X100CrMoV5		-		X100CrMoV5		2260	Cr5Mo1V
H13	SKD61	1.2344	X40CrMoV51		-	Z40CDV5		X40CrMoV5	2242	40CrMoV5
ASTM H13			X40CrMoV51				X40CrMoV51KU			
	SKD2	1.2436	X210CrW12		-	_		X210CrW12		-
S1	-	1.2542	45WCrV7		-	-		45WCrSi8		-
H21	SKD5	1.2581	X30WCrV93		-	Z30WCV9	X28W09KU			30WCrV9
_	-	1.2601	X165CrMoV12		-	-	X165CrMoW12KU	X160CrMoV12	2310	-
W210	SKS43	1.2833		BW2	-	Y1105V	-	-	-	V
T4	SKH3	1.3255	S 18-1-2-5		-	Z80WKCV	X78WCo1805KU		-	W18Cr4VCo5
T1	SKH2	1.3355		BT1	-	Z80WCV	X75W18KU		-	-
-	SCMnH/1	1.3401	G-X120Mn12		-	Z120M12		X120MN12	-	-
HW3	SUH1	1.4718	X45CrSi93		52	Z45CS9	X45CrSi8		-	X45CrSi93
D3	SUH3	1.3343	S6-5-2	4959BA2	-		15NiCrMo13		2715	-
M2	SKH9, SKH51		S6/5/2	BM2	-	Z85WDCV	HS6-5-2-2		2722	-
M7	-	1.3348	S 2-9-2	-	-	-	HS2-9-2	HS2-9-2	2782	-
M35	SKH55	1.3243	S6/5/2/5	BM35	-	6-5-2-5	HS6-5-2-5	F.5613	2723	-

MATERIAL CROSS REFERENCE LIST

STAINLESS STEEL (FERRITIC, MARTENSITIC)

USA	Japan	Ger	many	U	. K.	France	Italy	Spain	Sweden	China
AISI/SAE	JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	GB
403	SUS403	1.4000	X7Cr13	403S17	-	Z6C13	X6Cr13	F.3110	2301	OCr13 1Cr12
-	-	1.4001	X7Cr14	-	-	-	-	F.8401	-	-
416	SUS416	1.4005	X12CrS13	416S21	-	Z11CF13	X12CrS13	F.3411	2380	-
410	SUS410	1.4006	X10Cr13	410S21	56A	Z10C14	X12Cr13	F.3401	2302	1Cr13
430	SUS430	1.4016	X8Cr17	430S15	60	Z8C17	X8Cr17	F.3113	2320	1Cr17
-	SCS2	1.4027	G-X20Cr14	420C29	56B	Z20C13M	-	-	-	-
_	SUS420J2	1.4034	X46Cr13	420S45	56D	Z40CM Z38C13M	X40Cr14	F.3405	2304	4Cr13
405	-	1.4003	-	405S17	-	Z8CA12	X6CrAl13	-	-	-
420	-	1.4021	-	420S37	-	Z8CA12	X20Cr13	-	2303	-
431	SUS431	1.4057	X22CrNi17	431S29	57	Z15CNi6.02	X16CrNi16	F.3427	2321	1Cr17Ni2
430F	SUS430F	1.4104	X12CrMoS17	-	-	Z10CF17	X10CrS17	F.3117	2383	Y1Cr17
434	SUS434	1.4113	X6CrMo17	434S17	-	Z8CD17.01	X8CrMo17	-	2325	1Cr17Mo
CA6-NM	SCS5	1.4313	X5CrNi134	425C11	-	Z4CND13.4M	(G)X6CrNi304	-	2385	-
405	SUS405	1.4724	X10CrA113	403S17	-	Z10C13	X10CrA112	F.311	-	OCr13Al
430	SUS430	1.4742	X10CrA118	430S15	60	Z10CAS18	X8Cr17	F.3113	-	Cr17
HNV6	SUH4	1.4747	X80CrNiSi20	443S65	59	Z80CSN20.02	X80CrSiNi20	F.320B	-	-
446	SUH446	1.4762	X10CrA124	-	-	Z10CAS24	X16Cr26	-	2322	2Cr25N
EV8	SUH35	1.4871	X53CrMnNiN219	349S54	-	Z52CMN21.09	X53CrMnNiN219	-	-	5Cr2Mn9Ni4N
S44400	-	1.4521	X1CrMoTi182	-	-	-	-	-	2326	-
-	-	1.4922	X20CrMoV12-1	-	-	-	X20CrMoNi1201	-	2317	-
630	-	1.4542	-	-	-	Z7CNU17-04	-	-	-	-

STAINLESS STEEL (AUSTENITIC)

USA	Japan	Geri	many	U	. K.	France	Italy	Spain	Sweden	China
AISI/SAE	JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	GB
304L	SUS304L	1.4306	X2CrNi1911	304S11	-	Z2CN18.10	X2CrNi18.11	-	2352	OCr19Ni10
304	SUS304	1.4350	X5CrNi189	304S11	58E	Z6CN18.09	X5CrNi1810	F.3551	2332	OCr18Ni9
								F.3541		
								F.3504		
303	SUS303	1.4305	X12CrNiS188	303S21	58M	Z10CNF18.09	X10CrNiS18.09	F.3508	2346	1Cr18Ni9MoZr
-	SUS304L	_	-	304C12	-	Z3CN19.10	1	-	2333	-
304L	SCS19	1.4306	X2CrNi189	304S12	-	Z2CrNi1810	X2CrNi18.11	F.3503	2352	-
301	SUS301	1.4310	X12CrNi177	-	-	Z12CN17.07	X12CrNi1707	F.3517	2331	Cr17Ni7
304LN	SUS304LN	1.4311	X2CrNiN1810	304S62	-	Z2CN18.10	—	_	2371	-
316	SUS316	1.4401	X5CrNiMo1810	316S16	58J	Z6CND17.11	X5CrNiMo1712	F.3543	2347	0Cr17Ni11Mo2
_	SCS13	1.4308	G-X6CrNi189	304C15	-	Z6CN18.10M	-	—	-	–
-	SCS14	1.4408	G-X6CrNiMo1810	316C16	-	—	-	F.8414	—	_
	SCS22	1.4581	G-X5CrNiMoNb1810	318C17	-	Z4CNDNb1812M	XG8CrNiMo1811	_	-	_
316LN	SUS316LN	1.4429	X2CrNiMoN1813	-	-	Z2CND17.13	-	—	2375	OCr17Ni13Mo
316L	-	1.4404	-	316S13	-	Z2CND17.12	X2CrNiMo1712	-	2348	
316L	SCS16 SUS316L	1.4435	X2CrNiMo1812	316S13	-	Z2CND17.12	X2CrNiMo1712	_	2353	OCr27Ni12Mo3
316	-	1.4436	-	316S13	-	Z6CND18-12-03	X8CrNiMo1713	-	2343, 2347	-
317L	SUS317L	1.4438	X2CrNiMo1816	317S12	-	Z2CND19.15	X2CrNiMo1816	-	2367	OOCr19Ni13Mo
UNS V 0890A	-	1.4539	X1NiCrMo	_	-	Z6CNT18.10	-	-	2562	-
321	SUS321	1.4541	X10CrNiTi189	321S12	58B	Z6CNT18.10	X6CrNiTi1811	F.3553 F.3523	2337	1Cr18NI9Ti
347	SUS347	1.4550	X10CrNiNb189	347S17	58F	Z6CNNb18.10	X6CrNiNb1811	F.3552 F.3524	2338	1Cr18Ni11Nb
316Ti	-	1.4571	X10CrNiMoTi1810	320S17	58J	Z6CNDT17.12	X6CrNiMoTi1712	F.3535	2350	Cr18Ni12Mo2T
318	-	1.4583	X10CrNiMoNb1812	_	-	Z6CNDNb1713B	X6CrNiMoNb1713	-	-	Cr17Ni12Mo3Mb

USA	Japan	Gerr	nany	U.	К.	France	Italy	Spain	Sweden	China
AISI/SAE	JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	GB
309	SUH309	1.4828	X15CrNiSi2012	309S24	-	Z15CNS20.12	X6CrNi2520	-	-	1Cr23Ni13
310S	SUH310	1.4845	X12CrNi2521	310S24	-	Z12CN2520	X6CrNi2520	F.331	2361	OCr25Ni20
308	SCS17	1.4406	X10CrNi18.08	-	58C	Z1NCDU25.20	-	F.8414	2370	-
-	-	1.4418	X4CrNiMo165	-	-	Z6CND16-04-01	-	-	-	-
17-7PH	-	1.4568	-	316S111	-	Z8CNA17-07	X2CrNiMo1712	-	-	-
		1.4504								
NO8028	_	1.4563	_	_	_	Z1NCDU31-27-03	_	_	2584	-
S31254						Z1CNDU20-18-06AZ			2378	
321	SUS321	1.4878	X12CrNiTi189	321S32	58B, 58C	Z6CNT18.12B	X6CrNiTi18 11	F.3523	-	1Cr18Ni9Ti

HEAT RESISTANT STEEL

USA	Japan	Gerr	nany	U.	К.	France	Italy	Spain	Sweden	China
AISI/SAE	JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	GB
330	SUH330	1.4864	X12NiCrSi3616	-	-	Z12NCS35.16	-	-	-	-
HT, HT 50	SCH15	1.4865	G-X40NiCrSi3818	330C11	—	-	XG50NiCr3919	-	-	-

GRAY CAST IRON

USA	Japan	Gerr	nany	U.	К.	France	Italy	Spain	Sweden	China
AISI/SAE	JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	GB
-	-	-	-	-	-	-	-	-	0100	-
No 20 B	FC100	-	GG 10	-	—	Ft 10 D	-	-	0110	-
No 25 B	FC150	0.6015	GG 15	Grade 150	-	Ft 15 D	G15	FG15	0115	HT150
No 30 B	FC200	0.6020	GG 20	Grade 220	_	Ft 20 D	G20	-	0120	HT200
No 35 B	FC250	0.6025	GG 25	Grade 260	_	Ft 25 D	G25	FG25	0125	HT250
No 40 B	-	-	-	-	_	-	-	-	-	-
No 45 B	FC300	0.6030	GG 30	Grade 300	_	Ft 30 D	G30	FG30	0130	HT300
No 50 B	FC350	0.6035	GG 35	Grade 350	_	Ft 35 D	G35	FG35	0135	HT350
No 55 B	-	0.6040	GG 40	Grade 400	_	Ft 40 D	-	-	0140	HT400
A436 Type 2	-	0.6660	GGL NiCr202	L-NiCuCr202	-	L-NC 202	-	-	0523	-

DUCTILE CAST IRON

USA	Japan	Gerr	nany	U.	К.	France	Italy	Spain	Sweden	China
AISI/SAE	JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	GB
60-40-18	FCD400	0.7040	GGG 40	SNG 420/12	-	FCS 400-12	GS 370-17	FGE 38-17	07 17-02	QT400-18
-	-	-	GGG 40.3	SNG 370/17	-	FGS 370-17	-	-	07 17-12	-
_	-	0.7033	GGG 35.3	-	-	-	-	-	07 17-15	-
80-55-06	FCD500	0.7050	GGG 50	SNG 500/7	-	FGS 500-7	GS 500	FGE 50-7	07 27-02	QT500-7
A43D2	-	0.7660	GGG NiCr202	Grade S6	-	S-NC202	-	-	07 76	-
-	-	-	GGG NiMn137	L-NiMn 137	-	L-MN 137	-	-	07 72	-
_	FCD600	-	GGG 60	SNG 600/3	-	FGS 600-3	-	-	07 32-03	QT600-3
100-70-03	FCD700	0.7070	GGG 70	SNG 700/2	-	FGS 700-2	GS 700-2	FGS 70-2	07 37-01	QT700-18

MALLEABLE CAST IRON

USA	Japan	Gerr	nany	U.	К.	France	Italy	Spain	Sweden	China
AISI/SAE	JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	GB
-	FCMB310	-	-	8 290/6	-	MN 32-8	-	-	08 14	-
32510	FCMW330	-	GTS-35	B 340/12	-	MN 35-10	-	-	08 15	-
40010	FCMW370	0.8145	GTS-45	P 440/7	-	Mn 450	GMN45	-	08 52	-
50005	FCMP490	0.8155	GTS-55	P 510/4	-	MP 50-5	GMN55	-	08 54	-
70003	FCMP540	-	GTS-65	P 570/3	-	MP 60-3	-	-	08 58	-
A220-70003	FCMP590	0.8165	GTS-65-02	P 570/3	-	Mn 650-3	GMN 65	-	08 56	-
A 220-80002	FCMP690	-	GTS-70-02	P 690/2	-	Mn 700-2	GMN 70	_	08 62	-

SURFACE ROUGHNESS

SURFACE ROUGHNESS

(From JIS B 0601-1994)

Туре	Code	Determination	Determination Example (Figure)
Arithmetical Mean Roughness	Ra	Ra means the value obtained by the following formula and expressed in micrometer (μ m) when sampling only the reference length from the roughness curve in the direction of the mean line, taking X-axis in the direction of mean line and Y-axis in the direction of longitudinal magnification of this sampled part and the roughness curve is expressed by y=f(x): $Ra = \frac{I}{\varrho} \int_{\varrho}^{\varrho} f(x) dx \; (\mu m)$	
Maximum Height	Rz	Rz shall be that only when the reference length is sampled from the roughness curve in the direction of the mean line, the distance between the top profile peak line and the bottom profile valley line on this sampled portion is measured in the longitudinal magnification direction of roughness curve and the obtained value is expressed in micrometer (μ m). Note) When finding Rz, a portion without an exceptionally high peak or low valley, which may be regarded as a flaw, is selected as the sampling length. $Rz=R_P+Rv$ (μ m)	
Ten-Point Mean Roughness	Rzjis	RzJIS shall be that only when the reference length is sampled from the roughness curve in the direction of its mean line, the sum of the average value of absolute values of the heights of five highest profile peaks (Yp) and the depths of five deepest profile valleys (Yv) measured in the vertical magnification direction from the mean line of this sampled portion and this sum is expressed in micrometer (μ m). $RzJIS = \frac{(Yp_{1}+Yp_{2}+Yp_{3}+Yp_{4}+Yp_{5}) + (Yv_{1}+Yv_{2}+Yv_{3}+Yv_{4}+Yv_{5})}{5}$ (μ m)	Yp1, Yp2, Yp3, Yp4, Yp5 : altitudes of the five highest profile peaks of the sampled portion corresponding to the reference length I. Yv1, Yv2, Yv3, Yv4, Yv5 : altitudes of the five deepest profile valleys of the sampled portion corresponding to the reference length I.

■ RELATIONSHIP BETWEEN ARITHMETICAL MEAN (Ra) AND CONVENTIONAL DESIGNATION (REFERENCE DATA)

	lean Roughness Ra	Max. Height Rz	Ten-Point Mean Roughness Rzjis	Sampling Length for Rz • Rz us	Conventional Finish	
Standard Series	Cutoff Value λc (mm)	Standar	d Series	l (mm)	Mark	
0.012 a	0.08	0.05s	0.05z	0.08		
0.025 a	0.25	0.1 s	0.1 z	0.00		
0.05 a	0.25	0.2 s	0.2 z	0.05	$\nabla \nabla \nabla \nabla$	
0.1 a		0.4 s	0.4 z	0.25		
0.2 a		0.8 s	0.8 z			
0.4 a	0.8	1.6 s	1.6 z	0.0		
0.8 a		3.2 s	3.2 z	0.8	$\nabla \nabla \nabla$	
1.6 a		6.3 s	6.3 z			
3.2 a	0.5	12.5 s	12.5 z			
6.3 a	2.5	25 s	25 z	2.5	$\nabla \nabla$	
12.5 a		50 s	50 z		\bigtriangledown	
25 a	8	100 s	100 z	0		
50 a		200 s	200 z	8		
100 a	-	400 s	400 z	_		

*The correlation among the three is shown for convenience and is not exact.

*Ra : The evaluation length of Rz and RzJIS is the cutoff value and sampling length multiplied by 5, respectively.

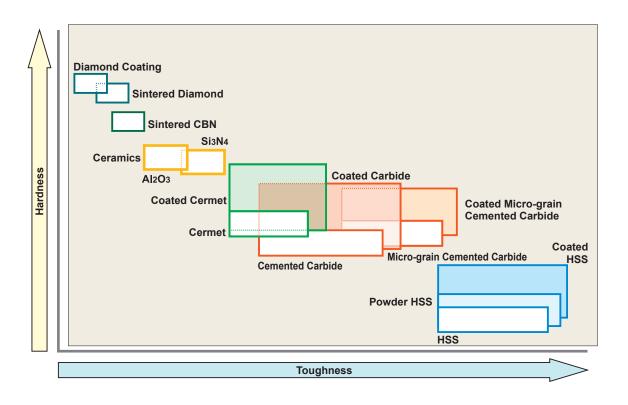
HARDNESS COMPARISON TABLE

HARDNESS CONVERSION NUMBERS OF STEEL

10 m	rdness (HB), 1m Ball, 3,000 kgf	(HV)	I	Rockwell H	ardness (3)	Hardness (HS)	Tensile Strength	10 m	rdness (HB), nm Ball, 3,000 kgf	(HV)		Rockwell H	lardness (3	3)	ess (HS)	Tensile Strength
Standard Ball	Tungsten Carbide Ball	Vickers Hardness (HV)	A Scale, Load: 60 kgf, Diamond Point (HRA)	B Scale, Load: 100 kgf, 1/16" Ball (HRB)	C Scale, Load: 150 kgf, Diamond Point (HRC)	D Scale, Load: 100 kgf, Diamond Point (HRD)	Shore Hardne	(Approx.) MPa (2)	Standard Ball	Tungsten Carbide Ball	Vickers Hardness (HV)	A Scale, Load: 60 kgf, Diamond Point (HRA)	B Scale, Load: 100 kgf, 1/16" Ball (HRB)	C Scale, Load: 150 kgf, Diamond Point (HRC)	D Scale, Load: 100 kgf Diamond Point (HRD)	Shore Hardness (HS)	(Approx.) MPa (2)
-	_	940 920	85.6 85.3	_	68.0 67.5	76.9 76.5	97 96	-	429	429 415	455	73.4	-	45.7	59.7	61	1510
_		920	85.0	_	67.0	76.5	90 95	_	415 401	401	440	72.8 72.0		44.5 43.1	58.8 57.8	59 58	1460 1390
—	(767)	880	84.7	_	66.4	75.7	93	—	388	388	410	71.4	_	41.8	56.8	56	1330
-	(757)	860	84.4	-	65.9	75.3	92	—	375	375	396	70.6	-	40.4	55.7	54	1270
—	(745)	840	84.1	-	65.3	74.8	91	—	363	363	383	70.0	. – .	39.1	54.6	52	1220
_	(733) (722)	820 800	83.8 83.4	-	64.7 64.0	74.3 73.8	90 88	—	352	352	372	69.3	(110.0)	37.9	53.8	51	1180
_	(722)		- 05.4	_	- 04.0	- 13.0	-00	_	341 331	341 331	360 350	68.7 68.1	(109.0) (108.5)	36.6 35.5	52.8 51.9	50 48	1130 1095
_	(710)	780	83.0	_	63.3	73.3	87	_	321	321	339	67.5	(108.0)	34.3	51.9	40	1095
—	(698)	760	82.6	-	62.5	72.6	86	—	021						01.0		
_	(684)	740	82.2	_	61.8	72.1	_	_	311 302	311 302	328 319	66.9 66.3	(107.5) (107.0)	33.1 32.1	50.0 49.3	46 45	1025 1005
—	(682)	737	82.2	-	61.7	72.0	84	—	293	293	309	65.7	(106.0)	30.9	48.3	43	970
-	(670)	720	81.8	-	61.0	71.5	83	—	285	285	301	65.3	(105.5)	29.9	47.6	_	950
_	(656) (653)	700 697	81.3 81.2	_	60.1 60.0	70.8 70.7		_	277	277	292	64.6	(104.5)	28.8	46.7	41	925
		600	01.1		50.7	70 F			269	269	284	64.1	(104.0)	27.6	45.9	40	895
_	(647) (638)	690 680	81.1 80.8	_	59.7 59.2	70.5 70.1	- 80	_	262	262	276	63.6	(103.0)	26.6	45.0	39	875
_	630	670	80.6	_	58.8	69.8	_	_	255	255	269	63.0	(102.0)	25.4	44.2	38	850
-	627	667	80.5	-	58.7	69.7	79	—	248 241	248 241	261 253	62.5 61.8	(101.0) 100	24.2 22.8	43.2 42.0	37 36	825 800
_	_	677	80.7	_	59.1	70.0	_	_	235	235	247	61.4	99.0	21.7	41.4	35	785
_	601	640	79.8	_	57.3	68.7	77	—	229	229	241	60.8	98.2	20.5	40.5	34	765
_	_	640	79.8	—	57.3	68.7		—	223 217	223 217	234 228		97.3 96.4	(18.8) (17.5)		33	 725
-	578	615	79.1	_	56.0	67.7	75	—	212	212	222	_	95.5	(17.0)	_	-	705
_	_	607	78.8	_	55.6	67.4	-	_	007	007	010		04.0	(45.0)			
-	555	591	78.4	—	54.7	66.7	73	2055	207 201	207 201	218 212		94.6 93.8	(15.2) (13.8)	_	32 31	690 675
_		579	78.0	_	54.0	66.1	_	2015	197	197	207	_	92.8	(12.7)	_	30	655
_	534	569	77.8	_	53.5	65.8	71	1985	192	192	202	-	91.9	(11.5)	-	29	640
_		533	77.1		52.5	65.0	_	1915	187	187	196	-	90.7	(10.0)	-	-	620
_	514	535 547	76.9	_	52.5 52.1	65.0 64.7	70	1890	183	183	192	-	90.0	(9.0)	-	28	615
	_				_				179	179	188	-	89.0	(8.0)	-	27	600
(495)	-	539	76.7	-	51.6	64.3	-	1855	174 170	174 170	182 178		87.8 86.8	(6.4) (5.4)	-	26	585
-		530 528	76.4 76.3	_	51.1 51.0	63.9 63.8	- 68	1825 1820	167	167	175		86.0	(5.4)		26	570 560
	490	520	10.5	_	51.0	03.0	00	1020									
(477)	-	516	75.9	—	50.3	63.2	-	1780	163	163 156	171	-	85.0 82.9	(3.3)	-	25	545 525
-		508	75.6	-	49.6	62.7	-	1740	156 149	149	156		82.9	(0.9)		23	525 505
	477	508	75.6	_	49.6	62.7	66	1740	143	143	150	_	78.7	_	_	23	490
(461)	_	495	75.1	_	48.8	61.9	-	1680	137	137	143	-	76.4	-	-	21	460
-		491	74.9	-	48.5	61.7	-	1670	4.0.4	4.6.1	4.0-						
	461	491	74.9	—	48.5	61.7	65	1670	131	131	137 132	-	74.0	-	-	-	450
444	_	474	74.3	_	47.2	61.0	_	1595	126 121	126 121	132		72.0 69.8		_	20 19	435 415
	_	472	74.3	_	47.2	60.8		1585	116	116	122	_	67.6	_	_	18	400
_	444	472	74.2	_	47.1	60.8	63	1585	111	111	117	-	65.7	-	-	15	
							~									ć	

Note 1) The above list is the same as that of AMS Metals Hand book with tensile strength in approximate metric value and Brinell hardness over a recommended range.

Note 2) 1MPa=1N/mm²

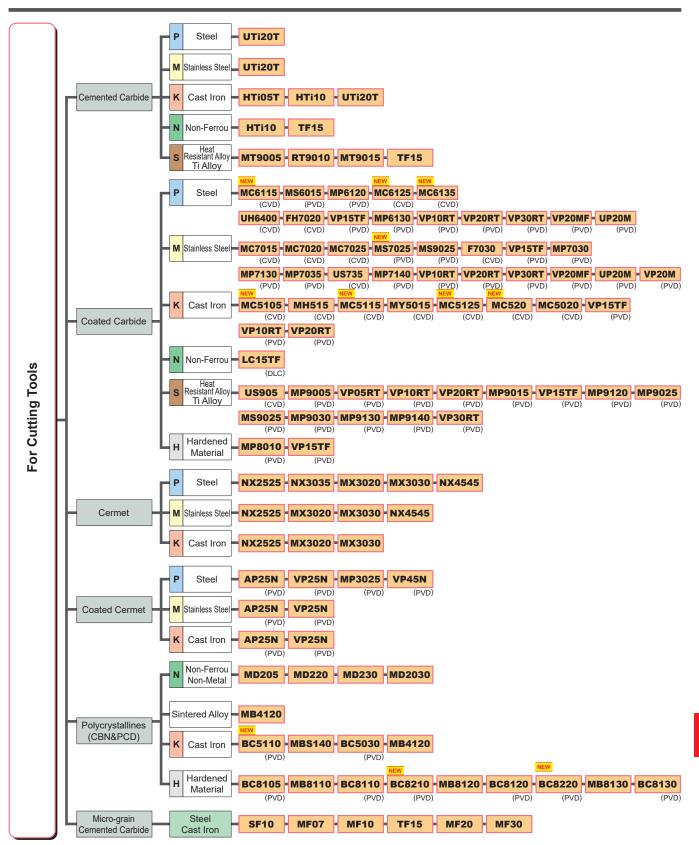

Note 3) Figures in () are rarely used and are included for reference. This list has been taken from JIS Handbook Steel I.

TECHNICAL DATA

CUTTING TOOL MATERIALS

The chart below shows the relationship between various tool materials, in relation with hardness on a vertical axis and toughness on a horizontal axis.

Today, cemented carbide, coated carbide and TiC-TiN-based cermet are key tool materials in the market, as they offer a good balance of hardness and toughness.



GRADE CHARACTERISTICS

Hard Materials	Hardness (HV)	Energy Formation (kcal/g · atom)	Solubility in Iron (%.1250°C)	Thermal * Conductivity (W/m⋅k)	Thermal Expansion (x 10 ⁻⁶ /k)	Tool Material
Diamond	>9000	_	Highly Soluble	2100	3.1	Sintered Diamond
CBN	>4500	-	-	1300	4.7	Sintered CBN
Si3N4	1600	_	_	100	3.4	Ceramics
Al2O3	2100	-100	≒ 0	29	7.8	Ceramics Cemented Carbide
TiC	3200	-35	< 0.5	21	7.4	Cermet Coated Carbide
TiN	2500	-50	-	29	9.4	Cermet Coated Carbide
TaC	1800	-40	0.5	21	6.3	Cemented Carbide
WC	2100	-10	7	121	5.2	Cemented Carbide

* 1W/m • K=2.39×10⁻³cal/cm • sec • °C

GRADE CHAIN

TECHNICAL DATA

GRADE COMPARISON TABLE

CEMENTED CARBIDE

		ISO	Mitsubishi			Seco		Sumitomo				
CI	lassifi- cation	Symbol	Materials	Kennametal	Sandvik	Tools	Iscar	Electric	Tungaloy	Kyocera	Walter	Ingersoll
	Ρ	P01										
		P10					IC70	ST10P	TH10			
		P20	UTi20T				IC70 IC50M	ST20E A30	KS20 UX30			P20
		P30	UTi20T				IC50M IC54	A30 A30N	KS15F			
		P40					IC54	ST40E	TX40			
	Μ	M10		KU10 K313 K68		890	IC07	EH510	TH10			
		M20	UTi20T	KU10 K313 K68		HX 883	IC07 IC08 IC20	EH520	KS20			
		M30	UTi20T				IC08 IC20 IC28	A30 A30N	UX30			
		M40					IC28		TU40			
	Κ	K01	HTi05T	KU10 K313 K68				H1 H2	KS05F			
Turning		K10	HTi10	KU10 K313 K68		890	IC20	EH510	TH10	KW10 GW15		K10
Tur		K20	UTi20T	KU10 K313 K68	H13A	НХ	IC20	G10E H10E EH520	KS15F KS20	GW25		
		K30	UTi20T			883		G10E H10E				
	Ν	N01			H10			H1 H2	KS05F	GW05 KW10		
		N10	HTi10	KU10 K313 K68	H10 HBA	890	IC08 IC20	EH510	TH10	KW10 GW15	WK1	K10
		N20		KU10 K313 K68	H10 HBA	HX KX	IC08 IC20	G10E EH520	KS15F			K10
		N30		RUO		883						
	S	S01	MT9005							SW05		
	Ŭ	S10	MT9005 RT9010 MT9015	KU10 K313 K68	H10A H10F H13A	HX 883	IC07 IC08	EH510	KS05F TH10	SW10	WS10 WK1	К10
		S20	RT9010 TF15	KU10 K313 K68		883	IC07 IC08	EH520	KS15F KS20	SW25		
		S30	TF15	100								
	Ρ	P10										
	-	P20	UTi20T	K125M			IC50M IC28	A30N				
		P30	UTi20T	GX	SM30		IC50M IC28	A30N	UX30			
		P40					IC28					
	Μ	M10					1					
		M20	UTi20T				IC08 IC20	A30N				
Milling		M30	UTi20T		SM30		IC08 IC28	A30N				
	_	M40					IC28					
	Κ	K01	HTi05T	K115M,K313						1014/10		
		K10	HTi10	K115M K313			IC20	G10E	TH10	KW10 GW25	WK10	IN05S
		K20	UTi20T		H13A	НХ	IC20	G10E		GW25		IN10K IN15K
		K30	UTi20T					proval from e				IN10K IN15K

TECHNICAL DATA

Ν

Note 1) The above table is selected from a publication. We have not obtained approval from each company.

MICRO GRAIN

	Classifi- cation	ISO Symbol	Mitsubishi Materials	Kennametal	Sandvik	Seco Tools	Sumitomo Electric	Tungaloy	Kyocera	Walter	Ingersoll
slo	Z	Z01	SF10 MF07 MF10		PN90 6UF,H3F 8UF,H6F		F0	F MD05F MD1508			IN05S
g Tools		Z10	HTi10 MF20		H10F	890	XF1 F1 AFU	MD10 MD0508 MD07F	FW30		IN05S
Cutting		Z20	TF15 MF30		H15F	890 883	AF0 SF2 AF1	EM10 MD20 G1F			IN05S
0		Z30				883	A1 CC				

CERMET

		ISO	Mitsubishi			Seco		Sumitomo				
	Classifi- cation		Materials	Kennametal	Sandvik	Tools	Iscar	Electric	Tungaloy	Kyocera	Walter	Ingersoll
	Ρ	P01	AP25N* VP25N*				IC20N IC520N*	T1000A	NS520 GT720*	CCX* TN610 PV710* PV30*		CT3000 PV3010* PV3030*
		P10	NX2525 AP25N* VP25N*	KT315 KT125	CT5015 GC1525 *	TP1020 TP1030* CM CMP*	IC20N IC520N* IC530N*	T1500A T1500Z *	NS520 NS9530 GT9530* AT9530*	CCX* TN60 TN610 PV710* TN620 PV720*	WEP10C*	CT3000 PV3010* PV3030*
		P20	NX2525 AP25N* VP25N* NX3035 MP3025*	KT325 KT1120 KT5020*	GC1525*	TP1020 TP1030 *	IC20N IC520N* IC30N IC530N* IC75T	T1500A T1500Z* T2500A T2500Z* T3000Z*	NS9530 GT9530* AT9530*	TN60 TN620 PV720* TN6020	WEP10C*	
bu		P30	MP3025* VP45N*				IC75T	T3000Z*		PV730* PV90*		
Turning	М	M10	NX2525 AP25N* VP25N*	KT125	GC1525*	TP1020 TP1030* CM CMP*		T1000A T1500Z*		TN60 TN620 PV720* TN6020		CT3000 PV3010* PV3030*
		M20	NX2525 AP25N* VP25N*					T1500A T1500Z*		TN90 TN6020 TN620 PV720* PV90*		CT3000 PV3010* PV3030*
		M30								PV730*		
	Κ	K01	NX2525 AP25N*					T1000A	NS520 GT720*	CCX* PV7005*		PV3030*
		K10	NX2525 AP25N*	KT325 KT125	CT5015				NS520 NS9530 GT9530*	CCX* PV7005* TN60		CT3000 PV3010* PV3030*
		K20	NX2525 AP25N*									CT3000 PV3010*
	Ρ	P10	NX2525			C15M	IC30N			TN620M TN60		
		P20	MX3020 NX2525	KT530M HT7 KT605M	CT530	C15M MP1020	IC30N	T250A T2500A		TN100M TN620M TN60		IN60C
		P30	MX3030 NX4545				IC30N	T4500A	NS740			
פנ	М	M10	NX2525				IC30N			TN60		
Milling		M20	MX3020 NX2525	KT530M HT7 KT605M	CT530	C15M	IC30N	T250A T2500A		TN100M		
		M30	MX3030 NX4545					T4500A				
	κ	K01										
		K10	NX2525							TN60		
		K20	NX2525	KT530M HT7								

GRADES COMPARISON TABLE

CVD COATED GRADE

	Classifi- cation	ISO Symbol	Mitsubishi Materials	Kennametal	Sandvik	Seco Tools	lscar	Sumitomo Electric	Tungaloy	Kyocera	Walter	Ingersoll
	P	P01	MC6115	KCP05B KCP05	GC4305 GC4415	TP0501 TP1501	IC9150 IC8150 IC428	AC810P AC8015P	T9105 T9205	CA510 CA5505	WPP01	TT8105B
		P10	MC6115 MY5015 MC6125	KCP10B KCP10 KCP25	GC4315 GC4325 GC4415	TP1501 TP2501	IC9150 IC8150 IC8250	AC810P AC8020P	T9205 T9105 T9115 T9215	CA510 CA5505 CA515 CA5515	WPP01 WPP05 WPP10G	TT8115B TT8125B
		P20	MC6115 MC6125 MC6135 MY5015	KCP25B KCP30B KCP25 KCP25C	GC4315 GC4325 GC4425	TP2501	IC8250 IC9250 IC8350	AC8020P AC820P AC2000 AC8025P	T9115 T9125 T9215 T9225	CA025P CA515 CA5515 CA525 CA5525 CR9025	WPP10S WPP20S WPP20G	TT8125B TT5100
		P30	MC6125 MC6135 UH6400	KCP30B KCP30	GC4325 GC4335 GC4425	TP3501	IC8350 IC9250 IC9350	AC6030M AC8035P AC830P AC630M	T9125 T9135 T9225 T9235	CA025P CA525 CA5525 CA530 CA5535 CR9025	WPP30S WPP30G	TT5100 TT8135B
		P40	MC6035 UH6400	KCP40 KCP40B	GC4335	TP3501 TP40	IC9350	AC6030M AC8035P AC630M AC830P	T9135 T9235	CA530 CA5535		TT7100
ng	Μ	M10	MC7015 US7020	KCM15B KCM15	GC2015 GC2220	TM1501 TM2000	IC6015 IC8250	AC610M AC6020M	T6120 T6215	CA6515	WAM20	TT9215
Turning		M20	MC7015 US7020 MC7025	KCM15 KCM25B KCP40B	GC2015 GC2220	TM2000 TM2501	IC8150 IC6015	AC6020M AC610M AC6030M AC630M	T6120 T6215	CA6515 CA6525		TT5100 TT9215
		M30	MC7025 US735	KCM35B KCP40	GC2025	TM4000 TM3501	IC8250 IC6025	AC6030M AC630M	T6130	CA6525		TT9225 TT9235
		M40	US735	KCM35B	GC2025	TM4000 TM3501	IC6025	AC6030M AC630M				TT9235
	Κ	K01	MC5105	KCK05B KCK05	GC3205 GC3210	TK0501 TH1500	IC5005	AC405K AC4010K	T505 T5105	CA4505 CA310	WKK10S	TT7005
		K10	MC5115 MH515 MY5015	KCK15B KCK15 KCK20 KCK20B	GC3205 GC3210	TK0501 TK1501	IC5005 IC5010 IC428	AC405K AC4010K AC4015K AC415K	T515 T5115	CA315 CA4515	WKK20S	TT7015
		K20	MC5125 MH515 MY5015	KCK20B KCK20	GC3225	TK1501	IC5010 IC8150	AC4015K AC415K AC420K	T5115 T5125	CA320 CA4515	WKP30S	
		K30	MC6115		GC3225 S05F			AC8025P	T5125	CA6515		TT3005
	S	S01	US905		S205		IC5400	ACP2000 XCU2500		CA6525		TT9215
	Ρ	P10				MP1501	IC5600	ACP100			WKP25S	IN6515
		P20	MC7020 F7030	KCPM20	GC4220	MP1501 MP2501 T25M MP1501	IC5400 IC5500	ACP2000 XCU2500 ACP100	T3130 T3225		WKP35S WKP35 WKP35G	IN6537
		P30	MC7020 F7030	KCPK30	GC4330 GC4230	MP2501 TM25 T350M	IC5500	XCU2500 ACP100	T3130 T3225			IN6537
		P40			GC4340 GC4240	MM4500 T350M						
	Μ	M10				MD0504		XCU2500 XCS2000 ACP100				
		M20	MC7020 F7030	KC925M		MP2501 MS2500 T25M T350M		ACM200 XCU2500 XCS2000	T3130 T3225	CA6535		IN6530
ng		M30	MC7020 F7030	KC930M	GC2040	MP2501 T25M T350M	IC5820	ACP100 XCU2500 ACM200 XCS2000	T3130 T3225	CA6535		IN7035
Milling		M40		KC930M KC935M		MM4500 T350M						
2	Κ	K01	MOEDO					XCK2002	T1045			
		K10	MC520 MC5020		GC3220			XCK2000 ACK200 ACK200 XCK2500	T1215 T1115	CA420M	WAK15	
		K20	MC520 MC5020	KC915M KC920M KC925M	GC3330 K20W	MP1501	IC5100	XCK2000 ACK2000	T1115		WKP25	IN6515
		K30 S01		KCPK30 KC930M KC935M	GC3330 GC3040	MP1501	IC5100 DT7150				WKP35G	IN6530
	S	S10				MP2501	IC5820	ACM200		CA6535	WSM45X	
		S20			GC2040	MP2501 MS2500 T350M T25M	IC5820	XCS2000 ACM200 XCS2000		CA6535		
		S30			S40T	MS2500 T350M T25M				CA6535		IN6535 IN7035

TECHNICAL DATA

Note 1) The above table is selected from a publication. We have not obtained approval from each company.

PVD COATED GRADE

		ISO	Mitsubishi			Seco		Sumitomo				
	Classifi- cation	Symbol	Materials	Kennametal	Sandvik	Tools	Iscar	Electric	Tungaloy	Kyocera	Walter	Ingersoll
	P	P01										
		P10	VP10MF MS6015	KCU10 KC5010 KC5510	GC1125	CP200 TS2000	IC250 IC807 IC907 IC908		AH710	PR1705 PR930 PR1025 PR1115 PR1225 PR1725		TT4410
		P20	VP10RT VP20RT VP15TF VP20MF MS6015	KCS10 KCU10 KC5025 KC5525	GC1525 GC1125	TS2500	IC1007 IC250 IC308 IC807 IC808 IC907 IC908 IC1008 IC1028 IC3028		AH725 AH120 J740 SH730 SH725	PR930 PR1025 PR1725 PR1115 PR1225 PR1425 PR1535		TT9080 TT4430
		P30	VP10RT VP20RT VP15TF VP20MF MS7025	KCU25 KC5525	GC1125	CP500	IC228 IC250 IC328 IC330 IC354 IC528 IC1008 IC1028	AC1030U AC530U	AH725 AH120 SH730 GH730 GH130 AH740 J740 SH725 AH7025	PR1025 PR1725 PR1225 PR1425 PR1425 PR1535 PR1625		TT7220
		P40				CP500 CP600	IC228 IC328 IC528 IC928 IC1008 IC1028		AH740	PR1535		TT8020
	М	M01		1		CP200 TS2000				PR1725		
		M10	VP10MF	KCS10 KCU10 KC5010	GC1525 GC1115 GC1125 GC1105	CP200 TS2000 TS2500	IC354 IC807 IC907 IC1007		AH8005 AH630 AH6225	PR1025 PR1225 PR930 PR1725	WSM20 WSM20S	TT4410 TT5080
ing		M20	VP10RT VP20RT VP15TF VP20MF MS7025 MS9025	KCU25 KC5025 KCU10 KC5010 KCS10	GC1525 GC1115 GC1125	TS2500 CP500 CP600	IC354 IC808 IC908 IC1008 IC1028	AC1030U AC530U AC6040M	AH725 AH120 SH730 AH630 SH725 AH8015 AH7025 AH6225	PR1025 PR1225 PR930 PR1535 PR1725	WSM30 WSM30S	TT4430 TT9080
Turning		M30	VP10RT VP20RT VP15TF VP20M VP20MF MS7025 MP7035	KC5025 KCU25	GC1125 GC2035	CP500 CP600	IC228 IC250 IC328 IC1008 IC1028	AC530U AC1030U AC6040M	AH725 AH120 SH730 J740 AH645 SH725 AH6235	PR1025 PR1725 PR1535 PR1225		TT8020 TT8080
		M40	MP7035		GC2035	CP600	IC328 IC928 IC1008 IC1028	AC530U AC6040M AC1030U	AH645 AH6235	PR1535 PR1225		
	Κ	K01				0.0000	10050		011110			
		K10		KCU10 KCS10 KC5010 KC5510		CP200 TS2000	IC350 IC1008		GH110 AH110			TT6080
		K20	VP10RT VP20RT VP15TF	KCU15 KCU25		CP200 TS2000 TS2500	IC228 IC808 IC830 IC908 IC1007 IC1008	AC1030U AC530U	AH7025 AH120			
		K30	VP10RT VP20RT VP15TF	KCU25 KC5525		CP500	IC228 IC350 IC808 IC830 IC908 IC928 IC1007 IC1008		AH120 GH130			
	S	S01	MP9005 VP05RT			TH1000	IC804 IC807 IC907	AC510U AC5005S AC5015S	AH8005	PR005S PR015S	WSM10 WSM10S	
		S10	MP9005 MP9015 VP10RT	KCU10 KC5010 KCS10 KCS10B	GC1105	CP200 TS2000 TS2050 TS2500 TH1000	IC806 IC807	AC5005S AC510U AC520U AC5015S AC5025S	AH8005 AH8015	PR005S PR015S	WSM20 WSM20S	TT5080 TT3010
		S20	MP9015 MT9015	KCU10 KCU25 KC5025 KCS10 KC5010 KCS10B	GC1105 GC1115 GC1125	TS2000 TS2500 CP200	IC228 IC328 IC808 IC908 IC928 IC806	AC520U AC5015S AC5025S	AH7025 AH8015	PR015S PR1535	WSM30 WSM30S	TT4430 TT3020 TT9080
		S30	MS9025 MP9025 VP15TF VP20RT	KCU25 KC5025	GC1125	CP600	IC928 IC830	AC1030U	AH630 AH7025	PR015S PR1535		TT8020
	Ρ	P01							AH710 AH110			
ng		P10		KC505M KC715M KC510M KC515M	GC1010 GC1130		IC250 IC350 IC808 IC810 IC910 IC950	ACU2500 ACP200	AH120 AH725	PR830 PR1225		IN4015 IN2004
Milling		P20	MP6120 VP15TF	KC522M KC525M KC527M KC610M KC620M KC635M KC715M KC730M KTPK20	GC1010 GC1030 GC1130 GC2030	F25M MP3000	IC250 IC328 IC330 IC350 IC808 IC810 IC830 IC910 IC928 IC950	ACU2500 ACP200	AH3135 AH3225 AH725 AH120 AH9130 AH6030 AH9030	PR830 PR1225 PR1230 PR1525		IN2004 IN2205

Note 1) The above table is selected from a publication. We have not obtained approval from each company.

GRADES COMPARISON TABLE

PVD COATED GRADE

Classifi- cation	ISO Symbol	Mitsubishi Materials	Kennametal	Sandvik	Seco Tools	Iscar	Sumitomo Electric	Tungaloy	Kyocera	Walter	Ingersoll
P	P30	MP6120 VP15TF MP6130 VP30RT	KC735M KC725M KC530M KCPM40	GC1010 GC1030 GC2030 GC1130	F25M MP3000 F30M MP2050	IC250 IC328 IC330 IC350 IC830 IC845 IC928 IC950	ACU2500 ACP200 ACP300	AH725 AH130 AH140 AH3035 AH6030 AH3225 AH9130	PR1230 PR1525	WSP45S WSP45G	IN1040 IN1540 IN2040 IN2205
	P40	VP30RT	KC735M KCPM40	GC2030 GC1030 GC1130	F40M T60M	IC328 IC330 IC830 IC928	ACP300	AH140 AH3035	PR1525		
Μ	M01					IC907					
	M10		KC715M KC515M	GC1025 GC1030 GC1010 GC1130			ACM100 ACU2500	AH725	PR1225		
	M20	VP15TF MP7130 MP7030 VP20RT	KC610M KC635M KC730M KC522M KC525M KCPM40 KTPK20	GC1025 GC1030 GC1040 GC2030 S30T	F25M MP3000	IC250 IC808 IC830 IC928	ACU2500 ACP200	AH725 AH6030 AH130 AH330 AH9130	PR1025 PR1225	WSM35S WSM35G	IN2205
	M30	VP15TF MP7130 MP7030 VP20RT MP7140 VP30RT	KC725M KC735M KCPM40 KC530M	S30T GC1040 GC2030	F30M F40M MP3000 MP2050	IC250 IC328 IC330 IC380 IC830 IC882 IC928	ACP200 ACP300 ACM300	AH130 AH140 AH730 AH3135 AH4035 AH9130	PR830 PR1225 PR1525 PR1535	WSP45S WSP45G	IN1515 IN1530 IN2005 IN2505 IN2205
	M40	MP7140 VP30RT			F40M MP2050	IC250 IC328 IC330 IC882	ACP300 ACM300	AH140 AH3135 AH4035	PR1525 PR1535		
κ	K01	MP8010						AH110 AH330			
	K10	MP8010	KCKP10 KC514M KC515M KC527M KC635M KCK20B	GC1010	MK2050	IC350 IC810 IC830 IC900 IC910 IC928 IC950 IC380	ACU2500 ACK3000	AH110 AH725 AH120 AH330	PR1210 PR1510	WKK25S WKK25G	IN2510 IN2004
	K20	VP15TF VP20RT	KTPK20 KC514M KC610M KC520M KC620M KC524M KCK20B	GC1010 GC1020	MK2000 MK2050	IC350 IC808 IC810 IC830 IC910 IC928 IC950	ACU2500 ACK3000 ACK300	AH120 AH9130 AH9030	PR1210 PR1510		IN1030 IN2010 IN2015 IN2205
	K30	VP15TF VP20RT	KC522M KC725M KC524M KC735M	GC1020	MK2050	IC350 IC808 IC830 IC928 IC950	ACK300 ACK3000	AH120			IN1510 IN2030 IN2205
S	S01					IC907 IC808		AH110 AH710	PR1210		
	S10	MP9120 VP15TF	KC510M	GC1130 GC1010 GC1030 GC2030	MS2050	IC907 IC840 IC910 IC808	EH520Z EH20Z ACM100	AH120 AH725	PR1210		
	S20	MP9120 VP15TF MP9130 MP9030	KC522M KC525M KCSM30 KCPM40	S30T GC2030 GC1030 GC1130	MS2050 MP2050	IC808 IC830 IC928 IC328 IC330 IC840 IC882 IC380	EH20Z ACK300 ACP300	AH725 AH6030 AH130	PR1535	WSM35S WSM35G	IN2205
	S30	MP9140	KC725M KCPM40	GC2030 GC1040	MS2050 F40M KCSM40	IC830 IC882 IC928	ACP300 ACM300	AH130 AH3135	PR1535	WSP45G	IN2205
н	H01	MP8010						AH110		WHH15	
	H10	VP05HT VP15TF VP10H	KC505M KC510M	GC1130 GC1010 GC1030	MH1000 F15M	IC808 IC907		AH710 AH110 AH120 AH710		WHH15X	
	H20	VP15TF		GC1030 GC1130	F15M	IC808 IC380		AH120 AH3135 AH725 AH9030			
	H30				MP3000 F30M	IC380		AH3135			

Note 1) The above table is selected from a publication. We have not obtained approval from each company.

CBN

		ISO	Mitsubishi Materials	Sandvik	Sumitomo	Tungolov	Kyoooro
	Classifi- cation	Symbol	witsubishi wateriais	Sanuvik	Electric	Tungaloy	Kyocera
	Η	H01	BC8105 BC8210 BC8110 MB8110	CB7105 CB7015	BNC2010 BN1000	BXA10 BXM10 BX310	KBN05M KBN510
		H10	BC8210 BC8110 BC8220 BC8120 MB8110 MB8120	CB7115 CB7125 CB7025	BNC2010 BNC2115 BN2000	BXA10 BXA20 BXM20 BX330	KBN020 KBN05M KBN25M KBN525
Turning	n	H20	BC8220 BC8120 MB8120	CB7125 CB7025	BNC2020 BNC2125 BN2000	BXA20 BXM20 BX360	KBN020 KBN25M
Tur		H30	BC8130 MB8130	CB7525 CB7135	BNC300 BN350	BXC50 BX380	KBN35M
	S	S01	MB730		BN700 BN7000	BX950	
	κ	K01	BC5110 MB5015		BNC8115 BNS8125	BX910	
		K10	MB4120	CB7525	BNC8115 BNS8125	BX480	KBN475 KBN60M
		K20	MB4120		BNC8115 BNS8125	BX480	KBN475 KBN60M
		K30	BC5030 MBS140	CB7925	BNC8115 BNS8125	BX480	
	Sinte	ered Alloy	MB4120		BN7115 BN7000	BX480 BX470	KBN70M KBN570

PCD

		ISO	Mitaubiahi Matariala	Conduik	Sumitomo	Tungalay	Kuaaara
	Classifi- cation	Symbol	Mitsubishi Materials	Sandvik	Electric	Tungaloy	Kyocera
bu	Ν	N01	MD205	CD05	DA90	DX180 DX160	KPD230
nin		N10	MD220	CD10	DA150	DX140	KPD010
In		N20	MD220		DA2200	DX120	
Ē		N30	MD230 MD2030		DA1000	DX110	KPD001

Note 1) The above table is selected from a publication. We have not obtained approval from each company.

INSERT CHIP BREAKER COMPARISON TABLE

NEGATIVE INSERT TYPE

ISO Classifi- cation	Cutting Mode	Mitsubishi Materials	Kennametal	Sandvik	Seco Tools	Walter	TaeguTec	Sumitomo Electric	Tungaloy	Kyocera
Р							FLP		01*	
	Finish	FH, FP	FF		FF1, FF2	FP5	FA	FA, FB	TF, 11	GP, PP, VF
		FY, FS		LC			FX	FL	ZF	XP, XP-T, XF
		LP		XF		MP3, FV5	FM	SU	PS	PQ
	Light		к	PF			MLP	LU, FE	NS, 27	
		SA, SH	LF, FN	MF	MF2		FG	SX, SE	TSF, AS, TQ	HQ, CQ
	Light (Mild Steel)	SY					FC		17	XQ, XS
	Light (With Wiper)	SW	FW	WL, WF	W-FF2 W-MF2	FW5, NF	ws	LUW, SEW	FW, SW AFW, ASW	WF WP, WQ
		MP		PM	MF3	MP5, MV5	PC, MP, FT	GU	PM, NM, ZM	PG, CJ, GS
	Medium	MA	MP, P	QM, XM	MF5, M3	MU5	МТ	UG	TA, TM, AM, 28	PS, HS
		МН	MN	XMR	M5		MGP	GE, UX	DM, 33, 37, 38	PT
	Medium (With Wiper)	MW	MW, RW	WMX, WM WR	W-M6, W-M3 W-MF5	MW5, NM	WT	GUW		WE
		RP		PR, HM	M6, MR6, MR7	RP5, RP7	RGP		TH THO	PH
	Rough	GH	RN, RP			RV5	RT	MU, MX, ME	TH, THS	GT
		Std.		Std.			Std.	UZ	Std.	Std.
		HZ	MR, RP	QR, PR	R4, R5	HU3, NRF	RX, RH	MP	TRS, 57	PX
	Heavy	HL, HM, HX	RM	HR, MR	R57, RR6, R7	HU5	HD, HY, HT	HG, HP	TU	
	_	HV	RH		R68, RR9	HU7, NRR	HZ, EH	HU, HW, HF	TUS, 65	
М	Finish Light	SH, LM	FF, FP LF *	XF, MF	FF1, FF2 MF1	FM5	SF	SU, EF	SS	MQ, SK*
		MS, GM	MS, MP	MM	MF3	MM5, RM5	ML	EX, EG, UP	SA, SF	MS, MU
	Medium	MM, MA	UP	QM, XM	MF4	MU5	EM, MM	GU	SM	ТК
		ES		К	MF5, M3		VF	HM	S	ST
		GH, RM	MR, RP	MR	M5, M6, R6			EM, MU	TH, SH	
	Heavy				R56, RR6, R7	HU5				
		HL, HZ		MR	R8,PR9			MP		
К	Finish Light	LK, MA	FN	KF	MF2 M3, M4	MK5	FG		CF	KQ
	Medium	MK, GK Std.	RP,UN	KM	M5	RK5, MV7	MC	UZ, GZ, UX	CM Std.	KG, Std., C
	Rough	RK		KR, KRR	MR7	RK7 RV7	кт			KH. GC, PH
	Heavy	Flat Top	Flat Top		MR9 Flat Top	Flat Top		Flat Top	CH, Flat Top	ZS, Flat Top
S	Finish	FS * , FJ *	FS * , FF	SF	MF1	FM5	FA	EF		MQ, SK *
	Light	LS,MJ,MJ*	LF * , MS, FN	SGF*	MF3	NFT MS3	EA, SF	SU *	HRF	
	Medium	MS	UP, P, NGP*	NGP * , SM	M1	NMS, NMT			SDM, HRM, 28	SQ
	Medium	MA	UP, P, NGP *	QM	M3	MU5		EG, EX, UP	SA, HMM	MS, MU, TK
	Hereit				MR3	NRS, NRT	F7			00.07
	Heavy	RS, GJ	RP	SR, SMR	MR4	HU5	ET	MU		SG, SX

*Peripheral ground type insert.

Note 1) Above charts are based on published data and not authorized by each manufacturer.

N050

ISO Classifi- cation	Cutting Mode	Mitsubishi Materials	Kennametal	Sandvik	Seco Tools	Walter	TaeguTec	Sumitomo Electric	Tungaloy	Kyocera
Ρ	Finish	SMG*	LF*	UM*		FP2*	SL* SA*	FF* FC*, SC*	JP* JS*, 01*	CF*,CK* GQ*,GF* SKS*, SK*
	Finish Light	FP, FV LS-P* LP, SV	UF, 11 LF, FP	PF, UF	FF1 F1, MF2	PF4, FP4	FA, FX SM*, FG	FB, FP, LU LB, SU	PF, PSF PS, PSS, TSF	GP, PP, VF XP
	Light (With Wiper)	SW	FW	WF	W-F1	FW4, PF		LUW, SDW		WP
	Medium	MV MP, Std.	MF, MP	PM, UM PR, UR	M3 F2, M5	FP6, MP4 MP6, RP4	PC SH*, MT	GU MU	TM, 23 PM, 24	HQ, MF * XQ, GK
	Medium (With Wiper)	MW	MW	WM	W-MF2 W-M3	MW4, PM	WT		SW	
м	Finish Light	FS-P* FM LS-P* LM	LF, UF FP	MF, UF	F1, F2 MF2	FM2 * FM4	FA FG	FF* FC*, SI* LU LB, SU	JP* PF, PSF PS, PSS	CF*,CK* GQ*,GF* MQ*,SK*
	Medium	MM Std.	MP	MM, UM MR, UR	M3 M5	FM6 MM4, RM4	PC MT	GU, MU	PM	HQ, GK
К	Medium	MK, Std. Flat Top	Flat Top	KF, KM, UM, KR	F1, M3, M5	FK6, MK4 RK4, RK6	МТ	MU, Flat Top*	Flat Top, CM	Flat Top*
Ν	Medium	AZ*	HP*	AL*	AL*	FN2*, PM2* MN2*	FL*	AG* AW*	AL*	AP* AH*
S	Finish Light	FS*, LS* FS-P*, LS-P* FJ* LS, MS	LF* HP*	UM * UF, MF UM, MM		FM2 * FM4, FM6 MM4, RM4	SA*, FA, FG SL*, SM* SH*, PC, MT	FF* SI* GU	Std.	CF*, CK* GQ*, GF* SK*, MQ

7°POSITIVE INSERT TYPE

*Peripheral ground type insert.

Note 1) Above charts are based on published data and not authorized by each manufacturer.

11°POSITIVE INSERT TYPE

ISO Classifi- cation	Cutting Mode	Mitsubishi Materials	Kennametal	Sandvik	Seco Tools	Walter	TaeguTec	Sumitomo Electric	Tungaloy	Kyocera
Ρ	Finish Light	FV, SMG * SV	UF, FP FW, LF	PF		FP4	FG PC	SI, FK. FB LU, LUW, LB SU,SF	01 * PF, PSF PS, PSS, TSF	PP, GP, GF * SKS * , CF * , CK * PF * , XP
	Medium	MV	MF MP, MW	PM, UM		MP4		GU, MU, US	PM TM, 23 24	HQ XQ
Μ	Finish Light	SMG * SV	HP* LF	MF		FM4	PC	SU	SS * PF, PS	GF*, CK* PF*, GP, CF* SKS*
	Medium	MV		ММ		MM4		GU, MU, US	PM, Std.	HQ

*Peripheral ground type insert.

Note 1) Above charts are based on published data and not authorized by each manufacturer.