

Ceramic End Mills

Ultra high productivity for nickel based heat resistant alloys

CERAMIC

COMPLETE METALWORKING SOLUTIONS

> (800) 991-4225 www.ahbinc.com ISO Certified customerservice@ahbinc.com

Ceramic End Mills CERANIC Corner Radius End Mills

From difficult-to-cut to easy-to-cut! Generation of cutting heat theory

Feature of Ni based heat-resistant alloy

Ni based difficult-to-cut heat resistant alloys such as Inconel®718 soften at temperatures exceeding 1472°F. At these temperatures, difficult-to-cut materials become easier to machine because their bearing and tensile strengths are lowered. Ceramic end mills can work effectively at these high temperatures and self generate the heat required to soften the machined material through ultra-high feeds and speeds.

High temperature hardness of cemented carbide and ceramic

Cemented carbide end mills whose material strength is significantly reduced in a temperature zone exceeding 1472°F, cannot increase machining speed and perform large depth of cut machining at high temperatures, in contrast ceramic end mills can preform machining at high temperatures because the strength is not reduced even at 1472°F.

Cutting Performance

Tool life comparison with Inconel®718 (HRC45) Ceramic end mill

Cutting efficiency 10 times greater than solid carbide end mill

Comparison with Inconel®718 (HRC45) Ceramic end mill

CERAMIC END MILLS

CE45RB/CE65RB Corner radius end mill, short cut length, 4-6 flute

Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	Tool Steel, Pre-Hardened Steel,Hardened Steel (≤45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (>55HRC)	Austenitic Stainless Steel	Heat Resistant Alloy	Copper Alloy	Aluminium Alloy
					O		

Unit:mm

Ceramic

	DC≤12			
ĸ	0.02 - 0.02			
Î	DC=6	DC=8,10	DC=12	
	- 0.008 - 0.028	- 0.009 - 0.029	- 0.011 - 0.031	
	DCON=6	DCON=8,10	DCON=12	
h6	- 0.008	0 - 0.009	0 - 0.011	

Ceramic corner radius end mill with high heat resistance.

Capable of softening Ni based alloys by generating heat during machining

No. of Flutes Stock **Order Number** DC RE APMX LU DN LF DCON Туре CE4SRBD0600R050 6 0.5 4.5 12 5.85 50 6 4 1 CE4SRBD0800R100 8 6.0 7.85 60 4 1.0 16 8 • 1 CE4SRBD1000R100 10 1.0 7.5 20 9.70 65 10 4 1 CE4SRBD1200R150 12 1.5 9.0 24 11.70 70 12 4 • 1 CE6SRBD0600R050 6 0.5 4.5 12 5.85 50 6 6 2 • CE6SRBD0800R100 8 1.0 6.0 16 7.85 60 8 6 2 CE6SRBD1000R100 10 7.5 20 9.70 65 10 6 2 1.0 • CE6SRBD1200R150 12 24 11.70 70 12 2 1.5 9.0 6

(Note 1) Never use ceramic end mills to cut titanium alloys.

Doing so will cause a risk of ignition and can be extremely dangerous.

RECOMMENDED CUTTING CONDITIONS

Side milling

	Inconel			
Work Material				
Dia.	Vc=1970SFM (1150-3300)	fz=.0016IPT		
DC (mm)	RPM	IPM	ap (inch)	ae (inch)
6	32000	151.2	.177	.047
8	24000	113.4	.236	.063
10	19000 89.8		.295	.079
12	16000	75.6	.354	.094
Cutting Condition	ae ap			
		DC:Dia.		

Slotting

	Inconel				
Work material					
Dia.	Vc=1970SFM (1150-3300)	fz=.0008IPT			
DC (mm)	RPM	IPM	ap (inch)		
6	32000	100.8	.059		
8	24000	75.6	.098		
10	19000	59.8	.118		
12	16000	50.4	.157		
Cutting Condition	DC ap DC:Dia.				

*Leave .012" of material on bottom and side

Side milling

Work material	Inconel			
	Vc=1970SFM (1150-3300)	fz=.0016IPT		
Dia. DC (mm)	RPM	IPM	ap (inch)	ae (inch)
6	32000	226.8	.177	.047
8	24000	170.1	.236	.063
10	19000	134.6	.295	.079
12	16000	113.4	.354	.094
Cutting Condition	ae ap DC:Dia.			

* 1) The outermost layer of the material may be affected by heat. Ensure a minimum of 0.012" final machining allowance remains.
2) The recommended ramping angle is 1.5 degree. When conducting ramping it is recommended to reduce the feed rate by 50% from the cutting conditions shown.
3) Gradually increase the width of cut starting from 0.05 x DC (cutter diameter) to maximum width of cut, this will help maintain tool life. See

illustration on page 5.

CERAMIC END MILLS

PRECAUTION

First recommendation for tool holding is a hydraulic chuck. Second recommendation is a precision milling chuck.

Collet chucks are not suitable.

Do not remove the built up edge

Do not remove any built up edge manually from the end mill after machining as this may cause chipping. The built up edge will be removed by the heat generated during the next cutting cycle.

Final machining allowance of more than .012 inch

Leave a minimum of .012 inch finishing allowance. Machining with ceramic end mills at high temperatures can affect the outermost layer of the machined material, therefore a final machining allowance must remain.

Others

Do not use open type machines

The chips generated during machining are at extremely high temperatures. Ensure the inside of the machine is free from any combustible materials.

Covered turn mill type machine

APPLICATION EXAMPLES

Cutter Body		CE6SRBD1000R100	CE6SRBD1200R150	
Workpiece		Inconel®718	Inconel®718	
Component		Turbine blade	Pocket component	
Process		Blade machining	Pocket machining	
a ns	Cutting Speed (SFM)	2,060	2,295	
uttin	Feed per Tooth (IPT)	.001	.002	
0 ō	Depth of Cut (inch)	ap=.028, ae=.047	ap=.059, ae=.197	
Cutting mode		Dry (No air blow)	Air blow	
Machine		Turn mill center	Vertical machining center	
Results		Cutting efficiency 3 times compared to carbide end miils.	Pocket milling of 3.937 × 3.937 × .394 inch is completed without a prepared hole in 2 min 40 seconds.	

For your safety Don't handle inserts and chips without gloves. Please machine within the recommended application range and exchange expired tools with new ones in advance of breakage. Please use safety covers and wear safety glasses. When using compounded cutting oils, please take fire precautions. When using rotating tools, please make a trial run to check run-out, vibration and abnormal sounds etc.

MITSUBISHI MATERIALS CORPORATION

COMPLETE **METALWORKING SOLUTIONS** (800) 991-4225 www.ahbinc.com

ISO Certified

customerservice@ahbinc.com