TOOLING & MACHINERY

COMPLETE METALWORKING SOLUTIONS(800) 991-4225www.ahbinc.comISO Certifiedcustomerservice@ahbinc.com

AMITSUBISHI MATERIALS U.S.A. TOOL NEWS | B197A-H

Your manufacturing success is our success.

It's simple. We want to provide high-quality cutting tool products that help deliver unparalleled performance and control for you to manufacture precisely perfect products every day.

Our long heritage of building partnerships through cutting tool solutions to metal working manufacturers, like yours, has given Mitsubishi Materials USA a solid reputation as an industry leader. We understand the importance of getting it right the first time by delivering high-quality cutting tool product brands to help overcome machining challenges to improve machining processes.

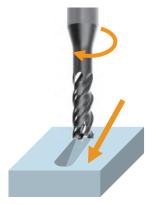
Your success is our success and is the driving force behind our innovative products. Our product brands, DIAEDGE and MOLDINO, are trusted globally in the metal manufacturing and die & mold industries for delivering expertly-designed manufactured tools of the trade for highly specialized industries like yours.

With the acquisition of MOLDINO Tool Engineering, Ltd, our traditional Mitsubishi Materials USA cutting tool product line is now sold under the DIAEDGE product brand name.

ABOUT OUR BRAND

Brands you can trust:

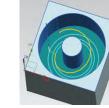
High-Performance End Mill


SMART MIRACLE End Mill Series VQ4MVM

Multi-functional end mill capable of steep ramping when machining a wide range of materials.

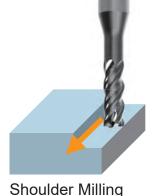
Ramping is a method of sinking gradually as the tool traverses.

This eliminates the need for a pilot hole when machining pockets, thereby reducing costs through tool consolidation. Compared to direct plunge cutting, ramping enables simultaneous multi-axis feed at high speeds to lower machining times. This method is ideal for machining wide and shallow pockets.

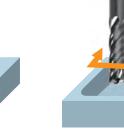

VQ4MVM provides high-performance and multifunctionality. It can perform shoulder milling, grooving, and helical machining, as well as ramping angles of up to 30° in carbon and alloy steels.

Steep Ramping Capability

27 sec



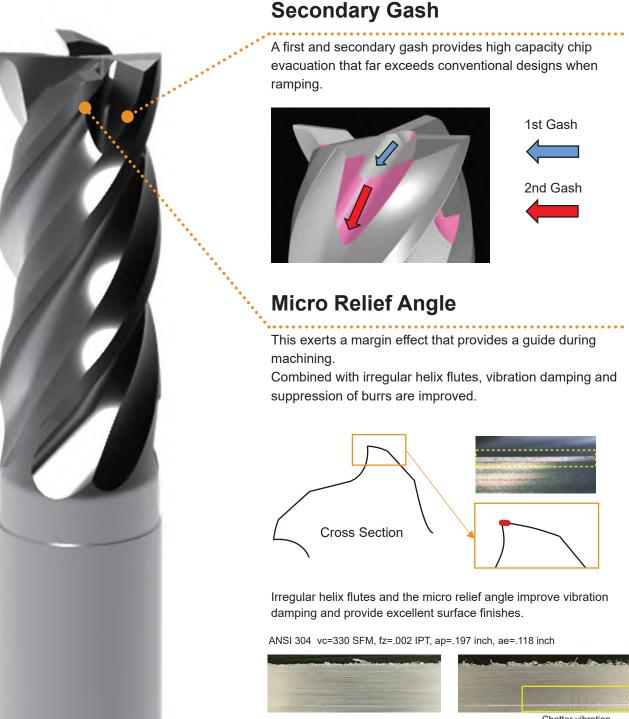
Conventional Helical Milling 7 passes needed


VQ4MVM Helical and Ramping

Only 1 pass needed

Slot Milling

Pocket Milling

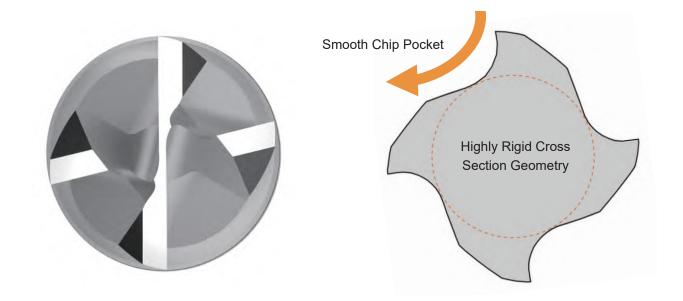


Helical Milling

SMART MIRACLE End Mill Series

Newly-developed coating with improved wear resistance. The smoothening treatment of the coating layer reduces cutting resistance and significantly improves chip discharge.

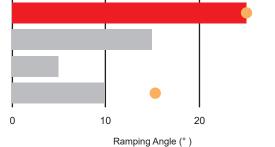
SMART MIRACLE Coating (AI,Cr)N coating is the most suitable coating for higher efficiency machining. ZERO-µ Surface The original surface treatment technology provides a smooth coating layer.

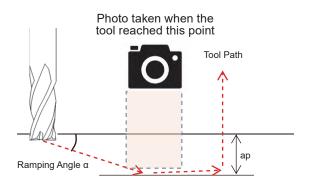

VQ4MVM

Conventional

Chatter vibration

Chip Pocket and Highly Rigid Geometry


VQ4MVM is suitable for steep ramping and chip evacuation performance due to the highly rigid geometry.


Comparison of Ramping Angles when Machining 304

Provided a good machined surface when machining with a ramping angle of 25°. The cutting conditions used in this comparison test differ from the recommended conditions. Please check the recommended conditions before commercial use.

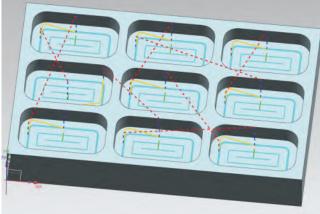
VQ4MVM Slotting end mill Irregular Helix end mill Conventional end mill with multi-functionality 0

<Cutting Conditions> Workpiece Material : AISI 304 Tool Ø.394 inch Cutting Speed : vc=165 SFM : fz=.001 IPT Feed per Tooth ap=.394 inch Depth of Cut . ae=.394 inch Over Length : 1.378 inch Cutting Mode External Coolant (Emulsion) Machine Vertical M/C (BT50)

In the second second

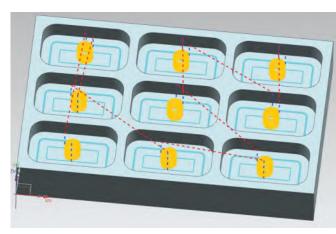
30

VQ4MVM 25°


Conventional end mill 15°

Comparison of Continuous Pocketing when Machining 1055

During continuous machining of small pockets, steep ramping reliably shortens machining time.


: AISI 1055 Pocket Size 1.969" x 1.181" x .394" R=8 Workpiece Material Tool : Ø.394 inch

Simulated by VQ4MVM

Total Cycle Time 4:35

Simulated Conventional Machining

Total Cycle Time 6:42

Ramping Angle 17° At the start of machining

<cutting conditions=""></cutting>										
Cutting Speed	: vc=330 SFM									
Feed per Tooth	: fz=.002 IPT									
Depth of Cut	: ap=.394 inch									

Rough Cutting

<cutting conditions=""></cutting>										
Cutting Speed : vc=330 SFM										
Feed per Tooth	: fz=.003 IPT									
Depth of Cut	: ap=.394 inch									
	ae≤.197 inch									

Finish Cutting

<cutting conditions=""></cutting>										
Cutting Speed	: vc=330 SFM									
Feed per Tooth	: fz=.003 IPT									
Depth of Cut	: ap=.394 inch									
	ae≤.197 inch									

Helical Angle 2° At the start of machining

<cutting conditions=""></cutting>										
: vc=330 SFM										
: fz=.003 IPT										
: ap=.394 inch										

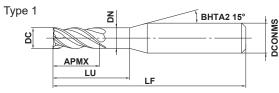
Same cutting conditions for roughing and finishing

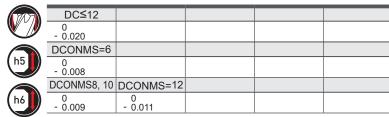
Rough Cutting

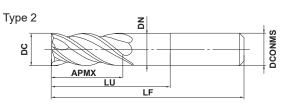
<cutting conditions=""></cutting>										
Cutting Speed	: vc=330 SFM									
Feed per Tooth	: fz=.003 IPT									
Depth of Cut	: ap=.394 inch									
	ae≤.197 inch									

Finish Cutting

<cutting conditions=""></cutting>										
Cutting Speed : vc=330 SFM										
Feed per Tooth	: fz=.003 IPT									
Depth of Cut	: ap=.394 inch									
	ae≤.197 inch									




High-Performance End Mill SMART MIRACLE End Mill Series


VQ4 End mill, Me	MVM edium cut leng	th, 4 flute, For	r multi-functior	nal machining	Uwc	VQ	37° 40°		
Carbon Steel, Alloy Steel, Cast Iron	Tool Steel, Pre-hardened Steel, Hardened Steel	Hardened Steel	Hardened Steel	Austenitic	Titanium	Alloy,	Copper Allov	Alum	inum Allov

$(\sim 30 \text{ HKC})$	$(\geq 45 \Pi RC)$	(~55HKC)	Stainless Steel	Heat Resistant Alloy	
O	0		O	0	

• Multi-functional end mill that enables steep ramping angles.

•Chip evacuation is improved by widening the radial cutting edge pocket.

		Dimensions (mm)							
Order Number	DC	APMX	Е	N	Ŀ	DCONMS	No. of Flutes	Stock	Type
VQ4MVMD0400N180	4	11	18	3.85	50	6	4	•	1
VQ4MVMD0500N180	5	13	18	4.85	50	6	4	•	1
VQ4MVMD0600N200	6	13	20	5.85	60	6	4		2
VQ4MVMD0800N240	8	19	24	7.85	60	8	4	•	2
VQ4MVMD1000N300	10	22	30	9.70	70	10	4	•	2
VQ4MVMD1200N360	12	26	36	11.70	75	12	4	•	2

Note 1) SMART MIRACLE Coating has very low electrical conductivity. Therefore, an external contact type of tool setter (electric transmitted) may not work. When measuring the tool length, please use an internal contact type (non-electrical type) or a laser tool setter.

- = Depth of cut max.
- LU = Usable length
- DN = Neck dia. LF
 - = Functional length
- **DCONMS** = Connection dia.

Recommended Cutting Conditions

Side Milling

Workpiec	e Material	Mild Steel, Alloy Steel		Alloy Tool Steel				Austenitic Stainless Steel Ferritic and Martensitic Stainless Steel, Titanium Alloys AISI 304, AISI 316, AISI 410,					
		AISI 1045,	AISI 4140			NAK, PX5	, SKD,SKT				ï-5Al-5V-Mo		
Dia.	. DC	Revolution		Depth of cut ap	Depth of cut	Revolution	Feed rate	Depth of cut ap	Depth of cut	Revolution		Depth of cut ap	Depth of cut
(mm)	(inch)	(min-1) (IPM)		(inch)			(IPM)	PM) (inch) (inch)		(min-1) (IPM)		(inch)	(inch)
4	.157	9500	55.1	.236	.047	5600	19.3	.157	.016	6400	18.5	.157	.024
5	.197	7600	55.1	.295	.059	4500	19.7	.197	.020	5100	18.5	.197	.035
6	.236	6400	55.1	.354	.071	3700	19.7	.236	.024	4200	22.8	.236	.047
8	.315	4800	51.2	.472	.094	2800	20.5	.315	.031	3200	24.8	.315	.059
10	.394	3800	47.2	.591	.118	2200	18.1	.394	.039	2500	26.0	.394	.071
12	.472	3200	39.4	.709	.142	1900	17.7	.472	.039	2100	24.0	.472	.094
Depth	of Cut							ae ap					

			n Hardening omium Alloy	g Stainless S 's	Steel	Heat Resistant Alloys				
Workpiec	e Material									
		AISI 630, A	ISI 631			Inconel718				
Dia.	DC	Revolution	Feed rate	Depth of cut	Depth of cut ae	Revolution	Feed rate	Depth of cut	Depth of cut ae	
(mm)	(inch)	(min-1) (IPM)		(inch)	(inch)	(min-1)	(IPM)	(inch)	(inch)	
4	.157	5600 19.3		.157	.031	2400	4.7	.157	.016	
5	.197	4500	19.7	.197	.039	1900	4.7	.197	.020	
6	.236	3700	19.7	.236	.047	1600	5.1	.236	.024	
8	.315	2800	20.5	.315	.063	1200	5.1	.315	.031	
10	.394	2200	18.1	.394	.079	950	5.5	.394	.039	
12	.472	1900	17.7	.472	.094	800	5.5	.472	.047	
Depth	Depth of Cut									

Note 1) SMART MIRACLE coating has very low electrical conductivity. Therefore, an external contact type of tool setter (electric transmitted) may not work. When measuring the tool length, please use an internal contact type (non-electrical type) or a laser tool setter. Note 2) When cutting austenitic stainless steels and titanium alloys, the use of water-soluble cutting fluid is effective. Note 3) If the depth of cut is shallow, the revolution and feed rate can be increased. Note 4) If the rigidity of the machine or the work materials installation is very low, or chattering and noise are generated, reduce the revolution and feed rate proportionately.

Recommended Cutting Conditions

Slot Milling and Ramping

Workpied	e Material	l í	Carbon Ste (180–280Hl				re-Hardened Steel (≤45HRC) Iloy Tool Steel				Austenitic Stainless Steel Ferritic and Martensitic Stainless Steel, Titanium Alloys			
						NAK, PX5,	NAK, PX5, SKD,SKT				AISI 304, AISI 316, AISI 410, AISI 430, Ti-5AI-5V-Mo-3Cr			
Dia (mm)	. DC (inch)	Revolution (min-1)	Feed rate (IPM)	Depth of cut ap (inch)	Depth of cut ae (inch)	Revolution (min-1)	Feed rate (IPM)	Depth of cut ap (inch)	Depth of cut ae (inch)	Revolution (min-1)	Feed rate (IPM)	Depth of cut ap (inch)	t Depth of cut ae (inch)	
4	.157	8000	33.1	.157	.157	4800	8.3	.079	.157	4800	11.0	.157	.157	
5	.197	6400	33.1	.197	.197	3800	8.3	.098	.197	3800	11.0	.197	.197	
6	.236	5300	33.1	.236	.236	3200	9.1	.118	.236	3200	11.8	.236	.236	
8	.315	4000	29.1	.315	.315	2400	9.4	.157	.315	2400	12.6	.315	.315	
10	.394	3200	26.8	.394	.394	1900	10.6	.197	.394	1900	13.8	.394	.394	
12	.472	2700	22.4	.472	.472	1600	10.2	.236	.472	1600	13.4	.472	.472	
Depth	of Cut							► ap						

Workpiece Material			n Hardening omium Alloy	g Stainless S 's	steel	Heat Resistant Alloys					
			ISI 631			Inconel718					
Dia	Dia. DC		Feed rate	Depth of cut ap	Depth of cut	Revolution	Feed rate	Depth of cut ap	Depth of cut ae		
(mm)	(inch)	(min-1)	(IPM)	(inch)	(inch)	(min-1)	(IPM)	(inch)	(inch)		
4	.157	4000	9.8	.079	.157	2000	3.7	.047	.157		
5	.197	3200	9.8	.098	.197	1600	3.7	.059	.197		
6	.236	2700	11.4	.118	.236	1300	3.8	.071	.236		
8	.315	2000	10.2	.157	.315	990	3.9	.094	.315		
10	.394	1600	9.1	.197	.394	800	4.7	.118	.394		
12	.472	1300	8.3	.236	.472	660	4.3	.142	.472		
Depth of Cut		DC ap									

- Note 1) SMART MIRACLE coating has very low electrical conductivity. Therefore, an external contact type of tool setter (electric transmitted) may not work. When measuring the tool length, please use an internal contact type (non-electrical type) or a laser tool setter.
- Note 2) When cutting austenitic stainless steels and titanium alloys, the use of water-soluble cutting fluid is effective.
- Note 3) When performing machining with a strong ramping angle, a high gripping force holder is recommended.
- Note 4) When performing ramping deeper than the recommended depth of cut, please divide the process into multiple steps within the recommended depth of cut.
- Note 5) If the rigidity of the machine or the work materials installation is very low, or chattering and noise are generated, reduce the revolution and feed rate proportionately.

Feed Rate Factor for Ramping

Mild Steel, Carbon Steel Alloy Steel (180–280HB) Workpiece Material								Pre-Harde Alloy Tool	ened Steel Steel	(≤45HRC)	Austenitic Stainless Steel Ferritic and Martensitic Stainless Steel Titanium Alloys				
Dia.	DC	Slot Milling Feed %							Slot Milling Feed %			Slot Milling Feed %			
(mm)	(inch)	1°	5°	10°	15°	20°	25°	30°	1°	5°	10°	1°	5°	10°	15°
4	.157	100	90	80	80	60	60	60	80	70	60	90	80	70	50
5	.197	100	90	80	80	60	60	60	80	70	60	90	80	70	50
6	.236	100	90	80	80	60	60	60	80	70	60	90	80	70	60
8	.315	100	95	90	90	90	75	75	70	60	50	90	80	70	60
10	.394	100	95	95	95	90	80	80	70	60	50	80	70	60	50
12	.472	100	95	95	95	90	80	80	70	60	50	80	70	60	50
Depth of Cut		angle ap													

Workpiec	e Material	Cobalt Ch	ion Harden nromium Al	Heat Resistant Alloys						
Dia.	Dia. DC		Slot	Slot Milling Feed %						
(mm)	(inch)	1°	5°	10°	15°	20°	1°	5°		
4	.157	90	80	70	60	60	90	80		
5	.197	90	80	70	60	60	90	80		
6	.236	90	80	70	60	60	90	80		
8	.315	90	80	70	60	60	90	80		
10	.394	80	80	70	60	60	80	70		
12	.472	80	80	70	60	60	80	70		
Depth of Cut		angle								

Note 2) When performing ramping, please use the feed rate shown on the previous page multiplied by the coefficient.

Note 3) When cutting austenitic stainless steels and titanium alloys, the use of water-soluble cutting fluid is effective.

Note 4) When performing machining with large ramping angles, a high-grip holder is recommended. Also, if the machine or workpiece material

recommended depth of cut.

Note 1) SMART MIRACLE coating has very low electrical conductivity. Therefore, an external contact type of tool setter (electric transmitted) may not work. When measuring the tool length, please use an internal contact type (non-electrical type) or a laser tool setter.

lacks rigidity, or if chipping occurs on the cutting edge, adjust the ramping angle and feed rate.

Note 5) When performing ramping deeper than the recommended depth of cut, please divide the process into multiple steps within the

MITSUBISHI MATERIALS U.S.A. CORPORATION

California Office (Headquarters)

3535 Hyland Avenue, Suite 200 Costa Mesa, CA 92626 Customer Service: 800.523.0800 Technical Service: 800.486.2341

Chicago Office (Engineering)

300 N. Martingale Road, Suite 500 Schaumburg, IL 60173 Main: 847.252.6300 Fax: 847.519.1732

MMC Metal de Mexico, S.A. DE C.V.

Av. La Cañada No.16, Parque Industrial Bernardo Quintana, El Marques, Queretaro C.P. 76246 MEXICO Main: +52.442.221.61.36 Fax: +52.442.221.61.34

www.diaedgetools.com www.mmc-carbide.com/us

Tools specifications subject to change without notice.

North Carolina-MTEC (Marketing & Technical Center)

105 Corporate Center Drive, Suite A Mooresville, NC 28117 Main: 980.312.3100 Fax: 704.746.9292

Toronto Office (Canada Branch)

600 Matheson Blvd. Unit 5 (Office) Mississauga, ON L5R 4C1 Main: 905.814.0240 Fax: 905.814.0245

Detroit Office (Moldino CS)

41700 Gardenbrook Road, Suite 120 Novi, MI 48375 Main: 248.308.2620 Fax: 248.308.2627

For Your Safety

- Don't handle inserts and chips without gloves.
- Please machine within the recommended application range and exchange expired tools with new ones in advance of breakage.
- Please use safety covers and wear safety glasses.
- When using compounded cutting oils, please take fire precautions.
- When attaching inserts or spare parts, please use only the correct wrench or driver.
- When using rotating tools, please make a trial run to check run-out, vibration and abnormal sounds etc.

Product Brands Crafted by Mitsubishi Materials U.S.A.

DIASEDGE

MOLDINO

B197A-H-US-2024.4

COMPLETE METALWORKING SOLUTIONS

> (800) 991-4225 www.ahbinc.com ISO Certified customerservice@ahbinc.com