

Meltio Engine CNC Hybrid Process

Meltio Engine CNC Integration

Hybrid Manufacturing Integration

The most affordable hybrid manufacturing solution, fitting almost any CNC machine in the market. Enable metal 3D printing and machining of complex geometries in a single process step.

Hybrid Manufacturing

Create highly complex parts with machining tolerances in the same process.

Part Repair

Cost-effective component repair, part augmentation and feature addition.

Retrofitting

Provide new capability to any CNC machine by turning it into an hybrid metal manufacturing system.

Geometry Freedom

No inherent constraints when the working envelope is only limited by the size of the motion system.

Μειτιο

Bolt-on Hardware Integration

Adapter Plate

Minimum requirements:

-Hybrid integration: Hardware + Safety + Mcodes

-Hybrid CAM software: (Example: Mastercam + Aplus)

-Specific training (CNC, hybrid product, Meltio).

Hybrid CAM Software:

Meltio Open platform

Meltio Software Partners Ecosystem for the Hybrid process

Examples of CNC hybrid software are: MasterCam + Aplus Additive plugin, Esprit by Hexagon; Fusion 360 or PowerMill by Autodesk; Hypermill by OpenMind; SiemensNX by Siemens; Hy5CAM by 1ATechnologies; and SprutCAM X by SprutCam.

CNC / Hybrid integrations: How does the integration work

- Gcode goes in \rightarrow then to machine \rightarrow machine talks to engine \rightarrow Engine supplies process information \rightarrow then to part

- How does info flow
- Which Information is passed
- How is the information shared

Interfaces and easy integration

Pin 17 and 18: 24V constant signal sent from the CNC in case of no emergency (Channel 1 and 2). These 24V must fall in case of door opening.

MELTIO

Pin 19 and 22 (Channel 1 and 2): 24V constant signal from the CNC to our Engine (Input to safety relays controlled by the Engine electronics)

Pin 20 NO or 21 NC for channel 1 return

Pin 23 NO or 24 NC for channel 2 return

The NC and NO state for the Engine's safety relay refer to the relay in an unpowered state. Therefore NC for a red state and NO for a blue state.

Pins 25 and 26: voltage free contact 1 without passing through the electronics (physical emergency stop button of the Engine)

Pins 27 and 28: voltage free contact 2 without passing through the electronics (physical emergency stop button of the Engine)

Pin 29 and 30 - 24V power supply of the engine with active safety (up to 1A) Meltio provides 24V if there is no emergency on ENGINE, e.g. to switch on peripherals such as cameras only when the Engine is ready.

Pin 31 and 32 -GND: 24V common from Meltio

Macros/Mcodes

M104-Initialize Print: Initialize the Meltio Engine for printing, including security checks as well as turning on the chiller and the defined argon flow. M105- Finalize Printing Process - Reset Signals: Set every Digital Output to low(0) at the beginning of the program to ensure a clear communication and finished the printing process.

M106-Start Deposition: Begins the extrusion of the filament and turns on the lasers.

M107-Start Deposition 2: Allow you to have different Laser Power and Wire Feeder Speed

M108-End Deposition: Ends the extrusion of the filament and turns off the lasers.

M109-Change to T0: Begins the change of material, retract the ACTIVE material 60 mm and extrude T0 material 60 mm.

M110-Change to T1: Begins the change of material, retract the ACTIVE material 60 mm and extrude T1 material 60 mm.

M111-Deploy: Extends the CNC Hardware integration and continues the argon flow.

M112-Enclose: Enclose the CNC Integration Hardware for a Hybrid process. When is enclosed it will stop the use of argon, this allow the Engine to have only one print log for the Hybrid process.

Communication Protocol

Default Communication is based as **Digital I/O:**

Any digital input or output can be assigned, including same output for all confirmations if necessary just selecting from the list.

On **CNC Integration Hardware**, includes the option to **enclose and extend** the deployment calling for a signal too.

Exist the possibility to add a delay, by default this is set to 0.

OPC DA and Socket, also available with logic as in previous versions.

Communication Protocol								
Protocol Digital I/C	· ·							
	Launch	Confirmation	Event Delay					
Initialize Print	Digital input 01 🖂							
Start Deposition 1	Digital input 02 🖂							
Start Deposition 2	None ~	Digital output 02 🖂	Before <mark>0</mark> ms	s After <mark>0 ms</mark>				
Start Deposition 3	None ~							
End Deposition	Digital input 04 🖂	Digital output 04 🗸	Before <mark>0</mark> ms	s After <mark>0 ms</mark>				
Change to T0	Digital input 05 🖂	Digital output 05 👒						
Change to T1	Digital input 06 🖂	Digital output 06 🗸						
				Apply				
				Apply Cancel				

Communication FlowChart CNC/Engine

Timeline

Understand more about the Meltio process following everything that occurs in the same Timeline. It includes Macros launch and duration, as well as, sensors as the continuity within the Integration Hardware and the part as being printed together with the Load Cell.

Timeline

600 617 621 640 680 690			G00 Z23.4
C01 C28 70			G49
G91 G20 ZU.			G91 G28 Z0.
NI TO MOC (Teel Charge)			G28 X0 Y0
			M01 (Conditional Program Stop)
14			N2
G54 G17 G90			
M105 (FINALIZE MELTIO ENG	SINE - RESET SIGNALS)		WITZ (ENCLOSE MELTIC HEAD)
M104 (INITIALIZE MELTIO EN	GINE)		
M111 (DEPLOY MELTIO ENGINE)			
G04 X15			
M109 (MELTIO TO MATERIAL)			G54 G17 G90
G00 X1.276 Y-48.472			G00 X-103.727 Y48.14 S632 M03
G43 H120 Z3.			G43 H4 Z46.
70			Z31.
		Millina <	G94 G01 Z20.813 F600.
G94 G01 X1.266 F600.		5	X103.727 F758.4
X-1.039 Y-48.489			 C01 720 813 E600
X-3.805 Y-48.35			X116 804 F758 4
X-6.559 Y-48.054			X103.727 Y-48.14
X-43.37 Y-21.709			X-103.727
X-44.538 Y-19.198 X-45 562 V-16 624	Printing		G01 X33.5
X-40.002 1-10.024			(G00 Z46.
X27.09 Y-39.017	Loop		G49
X24.818 Y-40.5			M09 (End Water and Air Cooling (CNC))
X4.403 Y-47.295			M05 (Spindle Stop)
X2.159 Y-47.439			G91 G28 Z0.
			G28 X0. Y0.
WITUO (END DEPOSITION)			M105 (FINALIZE MELTIO ENGINE - RESET SIGNALS
	J		M30
			%

Hybrid Manufacturing process flow

Hybrid manufacturing processes seek to combine the strengths of additive manufacturing (3D printing) with those of traditional CNC Milling / Subtractive manufacturing, to create a single manufacturing workflow that effectively uses both at once.

1. Hybrid Toolpath

2. Metal 3D Printing

3. CNC Machining

Hybrid Manufacturing of Complex Parts

Machine Setup

Μειτιο

More details of machine setup as performed on Lagun L1600 Powered by Meltio with FANUC 0imf-Plus controller

MELTIO

Meltio Engine V3 Integration Manual

Applies to Meltio Engine - V3 February 2024

CAM Setup

Engine Setup

Μειτιο

Feeder Speed Calculator

We included a very helpful tool to ensure the feeder speed is calculated correctly in case you are using a Custom Print Profile.

Defining the Print Speed (movement), Layer height and Layer width, together with the material wire radius (important to define it in the profile editor) will calculate the Feeder Speed, to be used in any Option for printing.

See the example to obtain 15.28mm/s as the speed of the wire for a 10mm/s robot movement speed, 1.2 mm layer height, and 1mm layer width. Using 1mm wire, hence 0.5 its radius.

Profile Editor

New interface offers every option parametrized, being able to apply different profile to Tool 0 and Tool 1. It includes Option 2 and Option 3, to allow, with the same profile to have different Laser, Feeder and Hotwire values, to be applied for Infill, perimeters or even to apply preheating. To be called with extra inputs and outputs.

Cooldown allow you to include extra wait times for part cooldown if necessary.

We offered also sub menus to define easily the best parameters match.

Profile

What offers the new software update?

Updated and renewed User Interface

Custom profiles without the need of writing macros, every possibility parametrized.

Live 3D model based on reading TCP positions from robot

Timeline for Sensors Analysis

4K Webcam Integration

Compatible with Welding Camera

Profiles for Meltio Materials and Meltio Space

MELTIO	∲ ⊘	¢ (!)
	9,60 Peol speec	10004 (25 mil) <u>Mil Mar</u> 27/15	90
Profile 1st Material (T0) - ACTIVE Space Puble Codem Puble 316	Set 2nd Material (1 Space Profile Select infil	1) Custom Profile	
Video			
Timeline	Change to T0 - Process cts Change to T1 - Continuity	Time Zoom In Time Zoom Out	
	MMM		

Adjust Seam

Recommended extrusion and retraction values for single wire and dual wire.

By default is set to : Adjust Seam + Single Wire

Set to **Dual Wire** when combining different materials.

Probe is used for probing rather than a fixed extrusion distance.

Custom allow you to define any value within a safe range to adjust the seam as much as possible having always reference values for Single and Dual.

Webcam or Welding Camera Integration

Connect your USB Web Camera to the Meltio Engine Control Unit to follow the print through the Meltio Engine together with the Timeline.

Meltio Offers for purchase the 4K Vision Kit, including tripod, 15 meters USB extension cable and 4K Webcam, please request it through technical support.

We have as an alternative to the USB camera, the welding camera.

Video

Live 3D View

Connect your ABB Robot (WAN) and Meltio Engine to your local network. Engine will read live TCP position and will show a 3D view as the program starts including colours according to the Load Cell values. Minimum (blue) and maximum (red) can be modified in configuration.

Currently only available for ABB, under development Kuka. Regarding CNC controllers Haas, Fanuc and Siemens are in the development timeline too.

Profile

