

Bi-Metal Band Saw Blades

Exceptional Value and Performance in General Purpose Cutting Applications

ు

LONG BLADE LIFE IN MRO AND PRODUCTION SETTING

• M42 high speed steel tooth edge provides superior heat and wear resistance

Optimized tooth geometry and set pattern reduces • stripped teeth

- **EXCELLENT VERSATILITY**Effectively cuts a wide range of metals from carbon steel to tool steel
 - Easily switches between solid and structural metals

BLADE SPECIFICATIONS

WIDTH X TI				TF	P				
IN	MM	2/3	3/4	4/6	5/8	6	6/10	8/12	10/14
1/2 x .025	12.7 X 0.64					\checkmark	\checkmark	\checkmark	\checkmark
3/4 x .035	19 x 0.90			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1 x .035	27 x 0.90	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
1-1/4 x .042	34 x 1.07	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
1-1/2 x .050	41 x 1.27		\checkmark	\checkmark					

APPLICATIONS

Al	uminum
No	on-Ferrous
Ca	arbon Steels
St	ructural Steels
AI	loy Steels
St	ainless Steel

DEWALT

Bi-Metal Band Saw Blades

SQUARE/RECTANGLE SOLID Locate width of cut (W) WIDTH OF CUT											
IN	2	.3	.4	.5	.6	.7	.8	.9	1	2	57
мм	5	7.5	10	12.	5 15	17.5	20	22.5	25	50	125
TPI	•	10/14	8/1	2	6/10		6/8	5/8	4	/6 3	/4 2/3

Diameter (D)

ROUND SOLID Locate diameter of cut (D) DIAMETER OF CUT												
IN	.3	.4	.5	.6	.7	.8	.9	1		2	5	10
ММ	7.5	10	12.5	15	17.5	20	22.5	25	1 1	50	125	250
TPI	10	/14	8/12	2	6/10		6/8 5/	/8	4/6	3	/4	2/3

TUBING/PIPE/ STRUCTURALS Locate wall thickness (T) WALL THICKNESS															
IN	.05	.10	.15	.20	.25	.30	.40	.50	.60	.70	.80	.90	1	1.5	
мм	1.25	2.5	3.75	5	6.25	7.5	10	12.5	15	17.5	20	22.5	25	37.5	
TPI	10/14	8/12	6/10	6/8 5/8	3	4	/6			3	3/4			2/3	

Bi-Metal Band Saw Blade Speed Chart

	MATERIALS BAND SE								
	ТҮРЕ	GRADE	FPM	МРМ					
	Leaded, Free Machining Low Carbon Steels	1145 1215 12L14	270 325 350	80 100 105					
	Low Carbon Steels	1008, 1018 1030	270 250	80 75					
CARDON STEELS	Medium Carbon Steels	1035 1045	240 230	75 70					
	High Carbon Steels	1060 1080 1095	200 195 185	60 60 55					
STRUCTURAL STEEL	Structural Steel	A36	250	75					
	Mn Steels	1541 1524	200 170	60 50					
	Cr-Mo Steels	4140 41L50 4150H	225 235 200	70 70 60					
ALLOY STEEL	Cr Alloy Steels	6150 5160	190 195	60 60					
	Ni-Cr-Mo Steels	4340 8620 8640 E9310	195 215 185 160	60 65 55 50					
BEARING STEEL	Cr Alloy Steels	52100	160	50					
MOLD STEEL	Mold Steels	P-3 P-20	180 165	55 50					
	Aluminum Alloys	2024, 5052, 6061, 7075	300+	85+					
	Copper Alloys	CDA 220 CDA 360 Cu Ni (30%) Be Cu	210 295 200 160	65 90 60 50					
ALUMINUM / Non-Ferrous	Bronze Alloys	AMPC0 18 AMPC0 21 AMPC0 25 Leaded Tin Bronze Al Bronze 865 Mn Bronze 932 937	180 160 110 290 150 215 280 250	55 50 35 90 45 65 85 75					
	Brass Alloys	Cartridge Brass, Red Brass (85%) Naval Brass	220 200	65 60					
		304	115	35					
		316	90	25					
	Stainless Steels	410,420	135	40					
STAINLESS STEEL		44UA	80	25					
	Procinitation bordoning	4400 17 / DH 15 5 DH	70	20					
	FIEGIPILATION NATURINING	17-4 FR, 13-3 FR 420E	150	20					
	Free Machining	301	125	40					

© 2017 DEWALT The following are trademarks for one or more DEWALT power tools and accessories. The yellow and black color scheme, the "D" shaped air intake grille, the array pyramids on the handgrip, the kit box configuration, and the array of lozenge-shaped humps on the surface of the tool.

Wall thickness (

HOW TO BREAK IN A BLADE

Select the proper band speed for the material to be cut (see chart on left).

Reduce the feed force/rate to achieve a cutting rate 20% to 50% of normal (soft materials require a larger feed rate reduction than harder materials).

Begin the first cut at the reduced rate. Make sure the teeth are forming a chip. Small adjustments to the band speed may be made in the event of excessive noise/vibration.

During the first cut, increase feed rate/force slightly once the blade fully enters the workpiece.

With each following cut, gradually increase feed rate/force until normal cutting rate is reached.

